One of Kepler's laws is that the orbits of planets are elliptical. It's not a suggestion.
BTW, circles are ellipses too, but so special that their likelihood is close to zero.
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
N2 = 3*n1
T2 = 2*T1
V1 = V2
(n2 * T2)/P2 = (n1 * T1)/P1
3 n1 * 2 T1 / P2 = n1 *T1 / P1
P2 = 6*P1
Since P2 is 6P1, it is 6 times greater than original pressure
Answer:
last option is the correct one