I think its a tbh bc it seems to be the best answer out of a b c and d
In both magnitude and direction since acceleration is a vector quantity
Answer:
184 feets
Explanation:
Given the data:
time (sec) __ velocity (ft/sec)
0 __________30
1 __________ 54
2 __________56
3 __________34
4 __________ 8
5 __________ 2
6 __________22
Using left end approximation:
(0,1) ___ f(0) = 30
(1,2) ___ f(1) = 54
(2,3) ___f(2) = 56
(3,4) ___f(3) = 34
(4,5) ___f(4) = 8
(5,6) __ f(5) = 2
Hence, the Total distance traveled during the 6 second interval is:
Change ; dT = 1
1 * (30 + 54 + 56 + 34 + 8 + 2) = 184
To solve the answer use the equation: a = fnet / m
a = 300 N / 25 kg
300 N / 25 kg = 12m/s
The acceleration of the object is 12m/s
Answer:

Now when it will reach at point B then its normal force is just equal to ZERO


Explanation:
Since we need to cross both the loops so least speed at the bottom must be

also by energy conservation this is gained by initial potential energy


so we will have

now we have

here we have
R = 7.5 m
so we have


Now when it will reach at point B then its normal force is just equal to ZERO

now when it reach point C then the speed will be
![mgh - mg(2R_c) = \frac{1}{2]mv_c^2](https://tex.z-dn.net/?f=mgh%20-%20mg%282R_c%29%20%3D%20%5Cfrac%7B1%7D%7B2%5Dmv_c%5E2)


now normal force at point C is given as


