1)
∠BAC = ∠NAC - ∠NAB = 144 - 68 = 76⁰
AB = 370 m
AC = 510 m
To find BC we can use cosine law.
a² = b² + c² -2bc*cos A
|BC|² = |AC|²+|AB|² - 2|AC|*|AB|*cos(∠BAC)
|BC|² = 510²+370² - 2*510*370*cos(∠76⁰) =
|BC| ≈ 553 m
2)
To find ∠ACB, we are going to use law of sine.
sin(∠BAC)/|BC| = sin(∠ACB)/|AB|
sin(76⁰)/553 m = sin(∠ACB)/370 m
sin(∠ACB)=(370*sin(76⁰))/553 =0.6492
∠ACB = 40.48⁰≈ 40⁰
3)
∠BAC = 76⁰
∠ACB = 40⁰
∠CBA = 180-(76+40) = 64⁰
Bearing C from B =360⁰- 64⁰-(180-68) = 184⁰
4)
Shortest distance from A to BC is height (h) from A to BC.
We know that area of the triangle
A= (1/2)|AB|*|AC|* sin(∠BAC) =(1/2)*370*510*sin(76⁰).
Also, area the same triangle
A= (1/2)|BC|*h = (1/2)*553*h.
So, we can write
(1/2)*370*510*sin(76⁰) =(1/2)*553*h
370*510*sin(76⁰) =553*h
h= 370*510*sin(76⁰) / 553= 331 m
h=331 m
Answer:
la probabilidad es 1/11
Step-by-step explanation:
Hay 4+4+4 = 12 canicas en total en la bolsa.
Pues la posibilidad de sacar una canica azul en el principio es 4/12 o 1/3.
Y luego, no reemplaces la canica, y hay 11 canicas en total.
Por eso la posibilidad de sacar otra canica azul después es 3/11.
Son eventos independientes, y tenemos que multiplicarlos para tener la respuesta.
1/3 * 3/11 = 1/11
well, the recursive rule of aₙ = aₙ₊₁ + 7, where a₁ = 15, is simply saying that
we start of at 15, and the next term is obtained by simply adding 7, and so on.
well, that's the recursive rule.
so then let's use that common difference and first term for the explicit rule.

Answer: Option 'B' is correct.
Step-by-step explanation:
Since we have given that
[3.2] [2.7] [2.9] [4.8]
Since they are all of greatest integer functions i.e.
f(x) = [x]
It is known as greatest integer function whose value is always less than or equal to 'x'.
So, [3.2]=3
[2.7]=2
[2.9]=2
[4.8]=4
so, we can see that [2.7] and [2.9] is a equivalent pair.
Hence, Option 'B' is correct.