Answer:
Produce resistance variety or use of fungicides.
Explanation:
The best solution for the future is to produce resistance variety to Panama Disease or fungicide spray that kills Fusarium fungus that causes Panama Disease. If the variety is resistance against Fusarium fungus so they get no adverse affect from it. The use of chemical that kills Fusarium fungus is also a good method to protect banana industry from the adverse effect of this disease.
Answer:
The acquired immune system, with help from the innate system, produces cells (antibodies) to protect your body from a specific invader. These antibodies are developed by cells called B lymphocytes after the body has been exposed to the invader. The antibodies stay in your child's body.
Answer:
True
Explanation:
A mutation is any alteration in the genetic sequence of the genome of a particular organism. Mutations in the germline (i.e., gametes) can pass to the next generation, thereby these mutations can increase their frequency in the population if they are beneficial or 'adaptive' for the organism in the environment in which the organism lives (in this case, an insect/bug). The mutation rate can be defined as the probability of mutations in a single gene/<em>locus</em>/organism over time. Mutation rates are highly variable and they depend on the organism/cell that suffers the mutation (e.g., prokaryotic cells are more prone to suffer mutations compared to eukaryotic cells), type of mutations (e.g., point mutations, fragment deletions, etc), type of genetic sequence (e.g., mitochondrial DNA sequences are more prone to suffer mutations compared to nuclear DNA), type of cell (multicellular organisms), stage of development, etc. Thus, the mutation rate is the frequency by which a genetic sequence changes from the wild-type to a 'mutant' variant, which is often indicated as the number of mutations <em>per</em> round of replication, <em>per</em> gamete, <em>per</em> cell division, etc. In a single gene sequence, the mutation rate can be estimated as the number of <em>de novo</em> mutations per nucleotide <em>per</em> generation. For example, in humans, the mutation rate ranges from 10⁻⁴ to 10⁻⁶ <em>per </em>gene <em>per</em> generation.