H2O is how you write the formula for water
Answer:
for this problem, 2.5 = (5+2/2)-(5-2/2)erf (50×10-6m/2Dt)
It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that D0= 8.5 ×10-5m2/s and Qd= 202,100 J/mol.
we have D= D0exp( -Qd/RT)
=(8.5×105m2/s)exp(-202,100/8.31×1023)
= 4.03 ×10-15m2/s
Answer:
r = 0.405m = 40.5cm
Explanation:
In order to calculate the length of the string between Wanda and the ball, you take into account that the tension force is equal to the centripetal force over the ball. So, you can use the following formula:
(1)
Fc: centripetal acceleration (tension force on the string) = 12N
m: mass of the ball = 60g = 0.06kg
r: length of the string = ?
v: linear speed of the ball = 9.0m/s
You solve for r in the equation (1) and replace the values of the other parameters:

The length of the string between Wanda and the ball is 0.405m = 40.5cm
Answer: C
. The gravitational pull from Jupiter is much greater than any other forces acting on Io.
Explanation:
Let's begin by the fact Jupiter is a huge massive planet, therefore the bodies that are closest to Jupiter will have a greater gravitational force than the other bodies. That is the situation with Io, the moon closest to Jupiter.
However, Io's orbit is very elliptical and eccentric compared to the outer moons, resulting in the distortion of its shape by the gravitational force. In fact, Io is considered the most geologically active object in the solar system, due to these variations.
Answer:
Explanation:
Force on the electron = q ( v x B )
q = - 1.6 x 10⁻¹⁹
v = (5.9i−6.4j)×10⁴
B = (−0.63i+0.65j)
v x B = (5.9i−6.4j)×10⁴ x (−0.63i+0.65j)
= (3.835 - 4.032 ) x 10⁴ k
= - 1970 k
Force on the electron = q ( v x B )
= - 1.6 x 10⁻¹⁹ x -1970 k
= 3.152 x 10⁻¹⁶ k
z-component of the force on the electron
Fz = 3.152 x 10⁻¹⁶ N