This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
Answer:
W = 3.1 N
Explanation:
moments about any convenient point will sum to zero.
I choose summing about the knife edge mark and will assume the ruler of weight W is of uniform construction.
I will assume the ruler weight makes a positive moment
W[55 - 50) - 0.040(9.8)[ 95 - 55] = 0
5W = 15.68
W = 3.136
Good morning.
We see that

The magnitude(norm, to be precise) can be calculated the following way:

Now the calculus is trivial:
The feel of weight comes due to the normal reaction force given by the support. Hence, the condition of weightlessness is when the normal reaction force becomes zero. So, during free fall there is no support which can provide the normal reaction. Hence, the bungee jumper feels weightless as she falls towards the earth because of the lack of support force that balances gravity.
Hence, the answer is 3.
Answer:
3
Explanation:
the answer is number three