1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
11

Find the volume of the figure. * 9 cm 10 cm 2 cm 10 cm 9 cm

Mathematics
1 answer:
SIZIF [17.4K]3 years ago
4 0

Answer:

Look up how  to find volume and you'll get the answer right away

Step-by-step explanation:

You might be interested in
My fruit basket
Pani-rosa [81]

Step-by-step explanation:

Dell Inspiron 15 5584 (C568125WIN9) Laptop (Core i7 8th Gen/8 GB/1 TB 512 GB SSD/Windows 10/4 GB)

3 0
3 years ago
I need help, please im stuck on this problem
Mazyrski [523]

Answer:

<em>0</em><em>.</em><em>0</em><em>3</em><em>5</em><em> </em><em>gram</em><em>.</em><em>.</em><em>.</em><em>.</em>

Step-by-step explanation:

.........

7 0
2 years ago
Read 2 more answers
** PLEASE HELP!!! HURRY!!! 30 POINTS AND BRAINLIEST FOR QUICKEST CORRECT ANSWER!!!!!!!*****
zzz [600]
This is Hard but I tried Hope this Helps.
22-2+20 = 0x=12.2        |y
                                      |
                                      | 
                  __________|__________x_
                                      |
                      20.5                | 
               2             10         |
               1                       |
m=Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
7 0
4 years ago
Suppose that the population​ P(t) of a country satisfies the differential equation dP/dt = kP (600 - P) with k constant. Its pop
jeka94

Answer:

The country's population for the year 2030 is 368.8 million.

Step-by-step explanation:

The differential equation is:

\frac{dP}{dt}=kP(600 - P)\\\frac{dP}{P(600 - P)} =kdt

Integrate the differential equation to determine the equation of P in terms of <em>t</em> as follows:

\int\limits {\frac{1}{P(600-P)} } \, dP =k\int\limits {1} \, dt \\(\frac{1}{600} )[(\int\limits {\frac{1}{P} } \, dP) - (\int\limits {\frac{}{600-P} } \, dP)]=k\int\limits {1} \, dt\\\ln P-\ln (600-P)=600kt+C\\\ln (\frac{P}{600-P} )=600kt+C\\\frac{P}{600-P} = Ce^{600kt}

At <em>t</em> = 0 the value of <em>P</em> is 300 million.

Determine the value of constant C as follows:

\frac{P}{600-P} = Ce^{600kt}\\\frac{300}{600-300}=Ce^{600\times0\times k}\\\frac{1}{300} =C\times1\\C=\frac{1}{300}

It is provided that the population growth rate is 1 million per year.

Then for the year 1961, the population is: P (1) = 301

Then \frac{dP}{dt}=1.

Determine <em>k</em> as follows:

\frac{dP}{dt}=kP(600 - P)\\1=k\times300(600-300)\\k=\frac{1}{90000}

For the year 2030, P (2030) = P (70).

Determine the value of P (70) as follows:

\frac{P(70)}{600-P(70)} = \frac{1}{300} e^{\frac{600\times 70}{90000}}\\\frac{P(70)}{600-P(70)} =1.595\\P(70)=957-1.595P(70)\\2.595P(70)=957\\P(70)=368.786

Thus, the country's population for the year 2030 is 368.8 million.

3 0
3 years ago
Please help me find the answer
eduard

Answer:

i think its the 3rd one very sorry if im wrong

Step-by-step explanation:

6 0
4 years ago
Other questions:
  • Given f(x) = 4x - 3 and g(x) = 7x +5, find f(x) + g(x).
    6·2 answers
  • The volume of a cube is 27 cubic inches. Which expression represents s, the length of a side of the cube?
    6·2 answers
  • 30.25 as a fraction in simplest form
    6·1 answer
  • What is (1/2)^8 in simplified exponent form
    5·1 answer
  • IN A RECTANGLE ABCD, BD=34 AND OC=3X+5 WHAT IS THE VALUE OF X
    13·1 answer
  • Which will produce similar but not congruent figures? Choose all that is correct :
    10·1 answer
  • Provide steps please
    8·1 answer
  • Amy bought 5lbs., 11oz. Of turkey cold cuts and 6lb., 12 oz. Of ham cold cuts. How much did she buy total? You should convert an
    7·2 answers
  • (-6, -6) and (-2,-2)
    5·1 answer
  • Question
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!