Explanation:
It is known that electric field is responsible for creating electric potential. As a result, it depends only on the electric field and not on the magnitude of charge.
So, when a charge is increased by a factor of 2 then electric potential will remain the same. Since, expression to calculate the electric potential is as follows.
U = qV
Since, the electric potential is directly proportional to the charge. Hence, when 0.2
tends to replaced by 0.4
then charge is increased by a factor of 2. Hence, the electric potential energy is doubled.
Thus, we can conclude that if that charge is replaced by a +0.4 µC charge then electric potential stays the same, but the electric potential energy doubles.
IM sure there is C, D, and E in kuiper belts, but not really sure of silicon and iron
Answer:
1/2 Hz
Explanation:
A simple harmonic motion has an equation in the form of

where A is the amplitude,
is the angular frequency and
is the initial phase.
Since our body has an equation of x = 5cos(π t + π/3) we can equate
and solve for frequency f

f = 1/2 Hz
Answer:
q₃ = -4.81 nC
Explanation:
We can use the Gauss Law here:
∅ = q/∈₀
where,
∅ = Net Flux = - 216 N.m²/C
q = total charge enclosed inside sphere = ?
∈₀ = permittivity of free space = 8.85 x 10⁻¹² C/N.m²
Therefore,
- 216 N.m²/C = q / 8.85 x 10⁻¹² C²/N.m²
q = (-216 N.m²/C)(8.85 x 10⁻¹² C²/N.m²)
q = - 1.91 nC
So, the total charge will be sum of all three charges:
q = q₁ + q₂ + q₃
- 1.91 nC = 1.74 nC + 1.16 nC + q₃
q₃ = - 1.91 nC - 1.74 nC - 1.16 nC
<u>q₃ = -4.81 nC</u>