Let's start b writing down coordinates of all points:
A(0,0,0)
B(0,5,0)
C(3,5,0)
D(3,0,0)
E(3,0,4)
F(0,0,4)
G(0,5,4)
H(3,5,4)
a.) When we reflect over xz plane x and z coordinates stay same, y coordinate changes to same numerical value but opposite sign. Moving front-back is moving over x-axis, moving left-right is moving over y-axis, moving up-down is moving over z-axis.
A(0,0,0)
Reflecting
A(0,0,0)
B(0,5,0)
Reflecting
B(0,-5,0)
C(3,5,0)
Reflecting
C(3,-5,0)
D(3,0,0)
Reflecting
D(3,0,0)
b.)
A(0,0,0)
Moving
A(-2,-3,1)
B(0,-5,0)
Moving
B(-2,-8,1)
C(3,-5,0)
Moving
C(1,-8,1)
D(3,0,0)
Moving
D(1,-3,1)
Answer:
2x - y - 3z = 0
Step-by-step explanation:
Since the set
{i, j} = {(1,0), (0,1)}
is a base in
and F is linear, then
<em>{F(1,0), F(0,1)} </em>
would be a base of the plane generated by F.
F(1,0) = a+b = (2i-2j+k)+(i+2j+k) = 3i+2k
F(0,1) = a+c = (2i-2j+k)+(2i+j+2k) = 4i-j+3k
Now, we just have to find the equation of the plane that contains the vectors 3i+2k and 4i-j+3k
We need a normal vector which is the cross product of 3i+2k and 4i-j+3k
(3i+2k)X(4i-j+3k) = 2i-j-3k
The equation of the plane whose normal vector is 2i-j-3k and contains the point (3,0,2) (the end of the vector F(1,0)) is given by
2(x-3) -1(y-0) -3(z-2) = 0
or what is the same
2x - y - 3z = 0
Answer:
Option b
Step-by-step explanation:
To solve this problem use the law of the sines.
We have 2 angles of the triangle and one of the sides.

The law of the sines is:

Then:


The equation of a circle is written as ( x-h)^2 + (y-k)^2 = r^2
h and k is the center point of the circle and r is the radius.
In the given equation (x+3)^2 + (y-1)^2 = 81
h = -3
k = 1
r^2 = 81
Take the square root of both sides:
r = 9
The center is (-3,1) and the radius is 9