Answer:
Step-by-step explanation:
<u>According to sequence we observe:</u>
- the first term is a₁ = 1
- the common ratio is r = 2/7
<u>Equation of nth term of GP:</u>
<u>Substitute to get:</u>
- aₙ = 1*(2/7)ⁿ⁻¹ = (2/7)ⁿ⁻¹
Correct choice is A
Answer:
x = 30.
Step-by-step explanation:
For the triangles to be similar corresponding sides must be in the same ratio.
So 50/ 75 = x / 45
75x = 50*45
x = 50* 45/75
= 2 * 45 / 3
= 30. (answer).
Given the function:

Let's find the amplitude and period of the function.
Apply the general cosine function:

Where A is the amplitude.
Comparing both functions, we have:
A = 1
b = 4
Hence, we have:
Amplitude, A = 1
To find the period, we have:

Therefore, the period is = π/2
The graph of the function is shown below:
The parent function of the given function is:

Let's describe the transformation..
Apply the transformation rules for function.
We have:
The transformation that occured from f(x) = cosx to g(x) = cos4x using the rules of transformation can be said to be a horizontal compression.
ANSWER:
Amplitude = 1
Period = π/2
Transformation = horizontal compression.
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The population proportion is 
The sample size is n = 563
Generally the population mean of the sampling distribution is mathematically represented as

Generally the standard deviation of the sampling distribution is mathematically evaluated as

=>
=>
Generally the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as

Here
is the sample proportion of persons with a college degree.
So
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma } < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%28%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D-%200.52%7D%7B0.02106%7D%20%3C%20%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3C%20%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D%20%2B%200.52%7D%7B0.02106%7D%20%29)
Here
![\frac{[\^p - p] - p}{\sigma } = Z (The\ standardized \ value \ of\ (\^ p - p))](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3D%20Z%20%28The%5C%20standardized%20%5C%20%20value%20%5C%20%20of%5C%20%20%28%5C%5E%20p%20-%20p%29%29)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 } < Z < \frac{-0.47 + 0.52}{0.02106 }]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%5Cfrac%7B-0.47%20-%200.52%7D%7B0.02106%20%7D%20%20%3C%20%20Z%20%20%3C%20%5Cfrac%7B-0.47%20%2B%200.52%7D%7B0.02106%20%7D%5D)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[ -2.37 < Z < 2.37 ]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%20-2.37%20%3C%20%20Z%20%20%3C%202.37%20%5D)
=> 
From the z-table the probability of (Z < 2.37 ) and (Z < -2.37 ) is

and

So
=>
=>
=> 
Answer:
$48.5
Step-by-step explanation:
Given data
Number of purses= 14+2= 16
Cost of 14 purses= $50
Cost of 2 purses= $38
Let us use the weighted cost method
Mean cost = (14*50+ 2*38)/16
Mean cost = (700+ 76)/16
Mean cost = 776/16
Mean cost =$48.5