Answer:
800.0 mL.
Explanation:
- To solve this problem; we must mention the rule states the no. of millimoles of a substance before and after dilution is the same.
<em>(MV)before dilution of HCl = (MV)after dilution of HCl</em>
M before dilution = 12.0 M, V before dilution = 100.0 mL.
M after dilution = 1.5 M, V after dilution = ??? mL.
∵ (MV)before dilution of HCl = (MV)after dilution of HCl
∴ (12.0 M)(100.0 mL) = (1.5 M)(V after dilution of HCl)
<em>∴ V after dilution of HCl = (12.0 M)(100.0 mL)/(1`.5 M) = 800.0 mL.</em>
No math is needed to explain this. All that you need to know is that the can (4°C) is in your hand (37°C).
Entropy will always move toward being balanced. Never will you find a lake in which half of it is 1°C and the other half is 70°C; it will be equal throughout.
Remember that "cold" doesn't exist. What we describe to be cold is actually a lack of heat.
So, by applying the two ideas above, it can be concluded that:
Since your hand is warmer than the can, the heat from your hand will be transferred to the can in order to reach an equal temperature.
It should be A
But you have this as chemistry? I think this is like a biology question
Molecules huddle close together.
cannot form to any shape.
They are called ISOTOPES.
:)