Answer is. gas <span>has the highest entropy.
</span>Entropy is the measure of the molecular disorder<span> and it is system’s thermal </span>energy<span> per unit </span>temperature<span> that is unavailable for doing useful </span>work<span>.
Nitrogen molecules have weakest intermolecular bonds in gas phase and move fast and without order. In solid state movement is much more less.
</span><span>
</span>
Answer:
P2 = 900 mmHg.
Explanation:
Given the following data;
Initial pressure = 450 mmHg
Initial temperature = 100°C
Final temperature = 200°C
To find the final pressure, we would use Gay Lussac's law;
Gay Lussac states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;

Making P2 as the subject formula, we have;


Final pressure, P2 = 900 mmHg.
Answer:
The answer to your question is Ferns
Explanation:
Ferns are called nonflowering plants and produce spores instead of seeds.
Answer:
The volume is 13, 69 L
Explanation:
We use the formula PV=nRT. We convert the temperature in Celsius into Kelvin and the pressure in mmHg into atm.
0°C= 273K---> 56°C= 56 + 273= 329K
760 mmHg----1 atm
719 mmHg----x= (719 mmHgx 1 atm)/760 mmHg= 0,95 atm
PV=nRT ---> V= (nRT)/P
V=( 0,482 molx 0,082 l atm/K mol x 329K)/0,95 atm
<em>V=13,68778526 L</em>