Answer: 7.693 L
Explanation:
To calculate the new volume, we use the equation given by Boyle's law. This law states that pressure is directly proportional to the volume of the gas at constant temperature.
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Thus new volume of the gas is 7.693 L
Answer:
a) volume of ammonium iodide required =349 mL
b) the moles of lead iodide formed = 0.0436 mol
Explanation:
The reaction is:

It shows that one mole of lead nitrate will react with two moles of ammonium iodide to give one mole of lead iodide.
Let us calculate the moles of lead nitrate taken in the solution.
Moles=molarityX volume (L)
Moles of lead nitrate = 0.360 X 0.121 =0.0436 mol
the moles of ammonium iodide required = 2 X0.0436 = 0.0872 mol
The volume of ammonium iodide required will be:

the moles of lead iodide formed = moles of lead nitrate taken = 0.0436 mol
The maximum safe operating temperature for this reaction is equal to 895°C.
<u>Given the following data:</u>
- Width of cylinder = 22 cm.
- Maximum safe pressure = 6.30mpa.
<u>Scientific data:</u>
- Ideal gas constant, R = 8.314 L-kPa/Kmol.
- Molar mass of of dinitrogen monoxide (
) gas = 66 g/mol.
Radius, r = 
<h3>How to calculate the maximum safe operating temperature.</h3>
First of all, we would determine the volume of the stainless-steel cylinder by using this formula:

Volume, V = 10,036.81
.
In liters, we have:
Volume, V = 10.04 Liters.
Next, we would determine the number of moles of dinitrogen monoxide (
) gas:

Number of moles = 8.136 moles.
Now, we can solve for the maximum safe operating temperature by applying the ideal gas equation:

T = 895.02 ≈ 895°C.
Read more on temperature here: brainly.com/question/24769208
For balancing acidic solutions, we would need to add H+ ions to the correct side of the equation to balance the total number of atoms and the overall charge.
Answer:
Precipitate
Explanation:
A precipitate is a solid formed from a chemical solution