Answer: $32.1
Explanation:
$482/15 = $32.1
Answer:
w < 8 meters ( w must be greater than 0 because length cannot be 0)
Step-by-step explanation:
One side with building is 23 meters, the other opposite side also will be 23 meters (with rope).
Let width (remaining 2 sides) be "w", he has AT MOST 39 meters of rope, so we can write:
Rope Needed = 23 + 2w < 39
Simplifying:

The range of possible values of w is
meters (of course w has to be greater than 0)
Answer:
x = (8-6i)/10
x = (8+6i)/10
Step-by-step explanation:
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so
