Answer:
5/10 20/28
Step-by-step explanation:
i think only these.. hope this helps..
Answer:
40
Step-by-step explanation:
so next year her money would be 6% more so:
5000 + (0.6 * 5000) = (1.06) * 5000
So each year she'll have : (1.06)*(last year's money)
So we can say after n years she will have :
((1.06)^n) * 5000
So:
5000((1.06)^n)=50000
n is 39.5
So around 40
Answer:
C and D
Step-by-step explanation:
Equating the line A and the parabola, we get
-3x + 2 = x² - 3x + 4
0 = x² - 3x + 4 +3x - 2
0 = x² + 2
-2 = x²
which has no real solutions. Then, the line A and the parabola don't intersect each other.
Equating the line B and the parabola, we get
-3x + 3 = x² - 3x + 4
0 = x² - 3x + 4 + 3x - 3
0 = x² + 1
-1 = x²
which has no real solutions. Then, the line B and the parabola don't intersect each other.
Equating the line C and the parabola, we get
-3x + 5 = x² - 3x + 4
0 = x² - 3x + 4 + 3x - 5
0 = x² - 1
1 = x²
√1 = x
which has 2 solutions, x = 1 and x = -1. Then, the line C and the parabola intersect each other.
Equating the line D and the parabola, we get
-3x + 6 = x² - 3x + 4
0 = x² - 3x + 4 + 3x - 6
0 = x² - 2
2 = x²
√2 = x
which has 2 solutions, x ≈ 1.41 and x ≈ -1.41. Then, the line D and the parabola intersect each other.
Answer: ![\frac{\sqrt[4]{10xy^3}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D)
where y is positive.
The 2y in the denominator is not inside the fourth root
==================================================
Work Shown:
![\sqrt[4]{\frac{5x}{8y}}\\\\\\\sqrt[4]{\frac{5x*2y^3}{8y*2y^3}}\ \ \text{.... multiply top and bottom by } 2y^3\\\\\\\sqrt[4]{\frac{10xy^3}{16y^4}}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{16y^4}} \ \ \text{ ... break up the fourth root}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{(2y)^4}} \ \ \text{ ... rewrite } 16y^4 \text{ as } (2y)^4\\\\\\\frac{\sqrt[4]{10xy^3}}{2y} \ \ \text{... where y is positive}\\\\\\](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%7D%7B8y%7D%7D%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%2A2y%5E3%7D%7B8y%2A2y%5E3%7D%7D%5C%20%5C%20%5Ctext%7B....%20multiply%20top%20and%20bottom%20by%20%7D%202y%5E3%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B10xy%5E3%7D%7B16y%5E4%7D%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B16y%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20break%20up%20the%20fourth%20root%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B%282y%29%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20rewrite%20%7D%2016y%5E4%20%5Ctext%7B%20as%20%7D%20%282y%29%5E4%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D%20%5C%20%5C%20%5Ctext%7B...%20where%20y%20is%20positive%7D%5C%5C%5C%5C%5C%5C)
The idea is to get something of the form
in the denominator. In this case, 
To be able to reach the
, your teacher gave the hint to multiply top and bottom by
For more examples, search out "rationalizing the denominator".
Keep in mind that
only works if y isn't negative.
If y could be negative, then we'd have to say
. The absolute value bars ensure the result is never negative.
Furthermore, to avoid dividing by zero, we can't have y = 0. So all of this works as long as y > 0.