1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
4 years ago
13

Lixin intends to buy either Gift A, which costs $10 or Gift B, which costs $8, as Christmas gifts for each of her parents, 2 sib

lings, 13 relatives and 10 friends. Given that she intends to spend $230, find the number of each gift she should buy
Please help !! I need someone
Mathematics
1 answer:
sasho [114]4 years ago
3 0
10a + 8b = 230
a + b = (2 + 2 + 13 + 10)...a + b = 27 (this is the number of gifts to buy)

a = 27 - b

10(27 - b) + 8b = 230
270 - 10b + 8b = 230
-10b + 8b = 230 - 270
-2b = -40
b = -40/-2
b = 20 <=== she bought 20 eight dollar gifts

a = 27 - b
a = 27 - 20
a = 7 <=== she bought 7 ten dollar gifts
You might be interested in
Will mark the Brainliest !!!!! A team of 5 boys and 4 girls will be chosen from a group of 16 boys and 13 girls,
vfiekz [6]

Answer:

Step-by-step explanation:

The total number of permutations of boys and girls on the team are:

¹⁶P₅*¹³P₄

1.

Bob will be one of the fixed boys to be picked. Hence, actually 4 boys are to be picked from 15. The permutations of girls being picked remains the same.

Probability = Permutations with Bob as one of the boys / Total permutations

Probability = (¹⁵P₄*¹³P₄) / (¹⁶P₅*¹³P₄) = ¹⁵P₄ / ¹⁶P₅

Probability = \frac{15!}{(15-4)!}/\frac{16!}{(16-5)!} = 15! / 16! = 1/16

2.

Now, Bob is one of the fixed boys and Jane is one of the fixed girls. Hence, actually 4 boys are to be picked from 15 and 3 girls are to be picked from 12.

Probability = Permutations with bob as one of the boys and jane as one of the girls / Total permutations

Probability = (¹⁵P₄*¹²P₃) / (¹⁶P₅*¹³P₄) = (1/16)*(1/13) = 1/208

3.

Now, the probability that at least Jane or Bob will be picked has been asked. This probability is a combination of three probabilities:

Probability = (Probability that only Bob will be picked) + (Probability that only Jane will be picked) + (Probability that both will be picked)

Probability = 1/16 + 1/13 + 1/208 = 0.123

4.

Total teams possible = ¹⁶P₅*¹³P₄ = 8994585600 teams are possible

5 0
3 years ago
I need help with this
MaRussiya [10]

Answer:

number one is 3 Step-by-step explanation:

number 2

the answer is 2

number 3

answer is 42

number 4 answer is 15

8 0
3 years ago
Which relation is a function?
Vesnalui [34]

Answer:

A, C, D, and E are all functions

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
if the point (-4,5) and (0,2) are used to find the slope of the line the slope is -3/4 what is the slope if the points (0,2) and
wariber [46]
The slope will be -3/4
To find slope you just place the change in y over the change in x.
2- -1=3
0-4= -4
The slope is -3/4 which is the same as before
7 0
3 years ago
Please help thank you ​
beks73 [17]

Answer:

The answer is the first R

Step-by-step explanation:

Because I said so

4 0
3 years ago
Other questions:
  • You have no idea how much it would mean to me and make my day if you helped me with this question ! :)
    14·1 answer
  • A man invested $16,000. He invested a portion at 6% and the balance at 8%. If he receives $260 every 3 months, how much did he i
    12·1 answer
  • A farmer plants corn and soybeans. This model shows the area reserved for each.
    11·2 answers
  • What is 3/5 equivalent too ?
    6·2 answers
  • A camera lens with index of refraction greater than 1.30 is coated with a thin transparent film of index of refraction 1.25 to e
    14·1 answer
  • M1Q1.) Which plot represents a stemplot of the data?
    11·2 answers
  • ASAP NEED ANSWERS :) PLEASEEEEEEEE
    8·2 answers
  • I need help with this!!!!!!!!!
    9·2 answers
  • What percent 21 is of 25
    10·1 answer
  • Equivalent fraction to 42\63
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!