Answer:
(a) 
(b) 
Solution:
According to the question:
Capacitance, C = 
Voltage of the battery, 
(a)The Energy stored in the Capacitor is given by:



(b) When the voltage of the battery is 6.00 V, the the energy stored in the capacitor is given by:



The mass of Jupitar is obtained from the calculations as 5.8 * 10^-14 Kg.
<h3>What is the mass of Jupitar?</h3>
There are nine planets in the solar system and the sun lies at the enter of our solar system. This is the heliocentric model of the solar system.
Given that;
T^2 = GMr^3/4π
T = period
G = gravitational constant
r = radius
M = mass of Jupitar
Now;
1 day = 86400 seconds
1.77 days = 1.77 days * 86400 seconds/1 day
= 152928 seconds
Making M the subject of the formula;
M =4πT^2/Gr^3
M = 4 * 3.142 * (152928)^2/6.67 × 10^-11 * (422 × 10^9)^3
M = 2.9 * 10^11/5.0 * 10^24
M = 5.8 * 10^-14 Kg
Learn more about mass of a planet:brainly.com/question/13851553
#SPJ1
1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is

Therefore, the angular velocity of the telescope is

2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is

Therefore, the linear velocity of the telescope is:

Answer:

Explanation:
If the object is rolling without slipping, every unit of rotated angle equals to a distance perimeter rotated.
Suppose the object complete 1 revolution within time t. The angular distance is 2π rad. Its angular velocity is 2π/t
The distance it covered is its circumference, which is 2πr, and so the speed is 2πr/t
So the linear speed compared to angular speed is


Answer:
299,792,458 m/s = speed of light
Explanation: