the scientific study of natural forces such as light, sound, heat, electricity, pressure, etc.
Answer:
The function has a maximum in 
The maximum is:

Explanation:
Find the first derivative of the function for the inflection point, then equal to zero and solve for x




Now find the second derivative of the function and evaluate at x = 3.
If
the function has a maximum
If
the function has a minimum

Note that:

the function has a maximum in 
The maximum is:

Answer:
Explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴



To find the constant k, we examine the total charge Q which is:


∴



Thus;




Hence, from equation (1), if k = 


To verify the units:

↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q



since 
