Answer:
acceleration 8 km/h/s south
Explanation:
First of all, let's remind that a vector quantity is a quantity which has both a magnitude and a direction.
Based on this definition, we can already rule out the following two choices:
distance: 40 km
speed: 40 km/h
Since they only have magnitude, they are not vectors.
Then, the following option:
velocity: 5 km/h north
is wrong, because the car is moving south, not north.
So, the correct choice is
acceleration 8 km/h/s south
In fact, the acceleration can be calculated as

where
v = 40 km/h is the final velocity
u = 0 is the initial velocity
t = 5 s is the time
Substituting,

And since the sign is positive, the direction is the same as the velocity (south).
The time spent in the air by the ball at the given momentum is 6.43 s.
The given parameters;
- <em>momentum of the ball, P = 0.9 kgm/s</em>
- <em>weight of the ball, W = 0.14 N</em>
The impulse experienced by the ball is calculated as follows;

where;
is impulse
is change in momentum
The time of motion of the ball is calculated as follows;

Thus, the time spent in the air by the ball at the given momentum is 6.43 s.
Learn more here:brainly.com/question/13468390
what do you need help with can i help with something or do you what me to give you the answer ask me anething and i got youExplanation:
Answer:
speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Explanation:
Given:
mass of truck M = 1370 kg
speed of truck = 12.0 m/s
mass of car m = 593 kg
collision is elastic therefore,
Applying law of momentum conservation we have
momentum before collision = momentum after collision
1370×12 + 0( initially car is at rest) = 1370×v1+ 593×v2 ....(i)
Also for a collision to be elastic,
velocity of approach = velocity of separation
12 -0 = v2-v1 ....(ii)
using (i) and (ii) we have
So speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s