A and D , that is, 5∛2x and -3∛2x are sets of the radical expressions listed that could be considered like terms. This can be obtained by understanding what like radicals are.
<h3>Which sets of the radical expressions listed could be considered like terms as written?</h3>
- Radical expression: Radical expression is an equation that has a variable in a radicand (expression under the root) or has a variable with a rational exponent.
For example, √128, √16
- Like radicals: Radicals that have the same root number and radicand (expression under the root)
For example, 2√x and 5√x are like terms.
Here in the question radical expressions are given,
By definition of like radicals we get that 5∛2x and -3∛2x are like terms since root number and radicand are same, that is, root number is 3 and radicand is 2x.
Hence A and D , that is, 5∛2x and -3∛2x are sets of the radical expressions listed that could be considered like terms.
Learn more about radicals here:
brainly.com/question/16181471
#SPJ9
Answer:
Step-by-step explanation:B) x es un número impar
Answer:
Null hypothesis:
Alternative hypothesis:
The statistic to check the hypothesis is given by:
And is distributed with n-2 degrees of freedom
And the statistic to check the significance of a coeffcient in a regression is given by:

For this case is importantto remember that t1 and p value for test of slope coefficient is the same test statistic and p value for the correlation test so then the answer would be:
Always
Step-by-step explanation:
In order to test the hypothesis if the correlation coefficient it's significant we have the following hypothesis:
Null hypothesis:
Alternative hypothesis:
The statistic to check the hypothesis is given by:
And is distributed with n-2 degrees of freedom
And the statistic to check the significance of a coeffcient in a regression is given by:

For this case is importantto remember that t1 and p value for test of slope coefficient is the same test statistic and p value for the correlation test so then the answer would be:
Always
..no lo sé, pero como necesito puntos, ¿sí?