Tan (x) = 0.8. To calculate the angle x, find the tan⁻¹ (0.8) = 38.7°
Step-by-step explanation:

In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2
Step-by-step explanation:
25(2x) + 25(3y)
25 · (2 · x) + 25 · (3 · y)
(25 · 2) · x + (25 · 3) · y <em>Associative property </em><em>(a · b) · c = a · (b · c)</em>
(25 · 2)x + (25 · 3)y
(2 · 25)x + (3 · 25)y <em>Commutative property</em><em> a · b = b · a</em>
<em>50x + 75y</em>
4 more than a number = x + 4
is more than = >
thirteen = 13
x + 4 > 13
Rationalizing is just simpllifying, so the simplified value has the same value as the original expression.