Answer:
12164.4 Nm
Explanation:
CHECK THE ATTACHMENT
Given values are;
m1= 470 kg
x= 4m
m2= 75kg
Cm = center of mass
g= acceleration due to gravity= 9.82 m/s^2
The distance of centre of mass is x/2
Center of mass(1) = x/2
But x= 4 m
Then substitute, we have,
Center of mass(1) = 4/2 = 2m
We can find the total torque, through the summation of moments that comes from both the man and the beam.
τ = τ(1) + τ(2)
But
τ(1)= ( Center of m1 × m1 × g)= (2× 470× 9.81)
= 9221.4Nm
τ(2)= X * m2 * g = ( 4× 75 × 9.81)= 2943Nm
τ = τ(1) + τ(2)
= 9221.4Nm + 2943Nm
= 12164.4 Nm
Hence, the magnitude of the torque about the point where the beam is bolted into place is 12164.4 Nm
Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.
D. all of the above
Hope this helps!
Answer:
B
Explanation:
While answer C may sound correct, Answer B is makes more sense. We know you cant use High-beam lights when u cant see ongoing traffic because it could affect the other driver coming across from you. Its good to use it when legal and safe, but in that term I still don't believe there's no reason for HIGH-beamed. That's this leaves B, when you are on u lighted streets.
Answer:
idk what the answer plz help!!!
Explanation: