Answer:
Hey
Your answer would be D (Aristotle stated that heavy objects fall faster than light objects). He thought be comparing a feather falling to a rock falling that you could see that heavier objects fall faster than light ones. of course now we know that all objects fall at the same speed and that weight does not affect that. only air drag affects how fast objects fall.
Answer:
Explanation:
Important here is to know that due north is a 90 degree angle, due east is a 0 degree angle, and due south is a 270 degree angle. Then we find the x and y components of each part of this journey using the sin and cos of the angles multiplied by each magnitude:

Add them all together to get the x component of the resultant vector, V:

Do the same to find the y components of the part of this journey:

Add them together to get the y component of the resultant vector, V:

One thing of import to note is that both of these components are positive, so the resultant angle lies in QI.
We find the final magnitude:
and, rounding to 2 sig dig's as needed:
1.0 × 10² m; now for the direction:
58°
Speed, agility, physical activity
Answer:
u" + 40u' + 49u = 2 sin(t/6)
upp + 40up + 49u = 2 sin(t/6)
Explanation:
Step 1: Data given
mass = 5 kg
L = 20 cm = 0.2 m
F = 10 sin(t/6)N
Fd(t) = - 6 N
u(0) = 0.03 m/s
u(0) = 0
u'(0) = 3 cm/s
Step 2:
ω =kL
k = ω/L = m*g /L = (5*9.8)/0.2 = 245 kg/s²
Since Fd(t) = -γu'(t) we know:
γ =- Fd(t) / u'(t) = 6N/ 0.03 m/s = 200 Ns/m
The initial value problem which describes the motion of the mass is given by
5u" + 200u' + 245u = 10 sin(t/6) u(0) = 0 ; u'(0) = 0.03
This is equivalent to:
u" + 40u' + 49u = 2 sin(t/6) u(0) = 0 ; u'(0) = 0.03
upp + 40up + 49u = 2 sin(t/6)
With u in m and t in s