This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.
Answer: The lower areas of the Atmosphere have a high temperature through the heats from the ground.
Explanation: High temperature experienced on the Earth surface is majorly caused by heats from the ground ( Earth crust).As a person ascend up to the Toposphere the temperature continues to reduce because because the heat from the ground is reduced as the heights increased.
It has been proven that as a person ascends into the Toposphere the amount of air and pressure reduces this will eventually lead to expansion of the gas particles which will then reduce the temperature.
Answer:
Physical Properties of Sodium
Atomic number 11
Melting point 97.82°C (208.1°F)
Boiling point 881.4°C (1618°F)
Volume increase on melting 2.70%
Latent heat of fusion 27.0 cal/g
Lenntech Water treatment & purification
Toggle navigation
Home Periodic table Elements Sodium
Sodium - Na
Chemical properties of sodium - Health effects of sodium - Environmental effects of sodium
Atomic number
11
Atomic mass
22.98977 g.mol -1
Electronegativity according to Pauling
0.9
Density
0.97 g.cm -3 at 20 °C
Melting point
97.5 °C
Boiling point
883 °C
Vanderwaals radius
0.196 nm
Ionic radius
0.095 (+1) nm
Isotopes
3
Electronic shell
[Ne] 3s1
Energy of first ionisation
495.7 kJ.mol -1