Kinetic energy = (1/2) (mass) (speed)²
BUT . . . in order to use this equation just the way it's written,
the speed has to be in meters per second. So we'll have to
make that conversion.
KE = (1/2) · (1,451 kg) · (48 km/hr)² · (1000 m/km)² · (1 hr/3,600 sec)²
= (725.5) · (48 · 1000 · 1 / 3,600)² (kg) · (km·m·hr / hr·km·sec)²
= (725.5) · ( 40/3 )² · ( kg·m² / sec²)
= 128,978 joules (rounded)
A research question that would complete the third question you need that are related to the first 2 questions which are:
- “what type of masks help prevent fog on glasses when breathing?”
- “does a mask’s material affect the level of fog on glasses as an effect of breathing?”
Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
<h3>What is a Research Question?</h3>
This refers to "a question that a research project sets out to answer". and seeks to give answers to particular phenomena.
Hence, we can see that the new research question Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
Read more about research questions here:
brainly.com/question/25257437
#SPJ1
Answer:
Option C
Explanation:
Kinetic energy is the energy that the body possesses by virtue of its motion.
The formula for Kinetic energy is given by 
Using this formula let us find kinetic energy for the bodies given and find out which is the greatest
A) KE = 
B) KE =
C) KE = 
D) KE = 
Comparing these we find that 9mv^2 is the highest.
Hence option C is the answer.
Answer:
magnitude of gravitational force between the Earth and the Sun at B is greater than that at A
Explanation:
Formula of gravitational force:
F = GMm/r^2
(r is the distance between 2 objects)
We see that r(B) < r(A) since at B, the Earth is closer to the Sun than at A
According to the Formula, the smaller r is, the greater F is
So, F(B) > F(A)
Answer:
The volume of the block is equal to the volume of water displaced by the block.
Explanation:
Volume refers to the amount of space occupied by a given object (in this case the block). When an object such as the block is immersed in water, it displaces its own volume of water. This volume of water displaced is equal to the volume of the block. Hence we can write;
Final Volume of water - Initial Volume of water= Water Displaced = Volume of the block
Recall that the density of a body is given by;
Density= mass/volume
If we obtain the volume of the block by measuring the volume of water displaced by the block, then we weigh the block using a weighing balance, we can obtain the density of the block easily from the relationship shown above.