3 hundreds + 7 hundreds = 1 thousand
300 + 700 = 1000
Answer:
Dilations produce similar figures because the image and pre-image will have congruent corresponding angles. The corresponding side lengths of the figures will be proportional based on the scale factor. The shape is preserved and the sides are enlarged or reduced by the scale factor
Step-by-step explanation:
Step-by-step explanation:
<h3>
<em><u>Given</u></em><em><u>:</u></em></h3>
Length of the rectangle = 6.5 m
Width of the rectangule = 7.3 m
<h3>
<em><u>Then</u></em><em><u>:</u></em></h3>
<u>First</u><u> </u><u>case</u><u>,</u>
Area of the rectangle
= length × width
= 6.5 m × 7.3 m
= <em><u>47.45</u></em><em><u> </u></em><em><u>s</u></em><em><u>q</u></em><em><u>.</u></em><em><u>m</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em><em><u>(</u></em><em><u>i</u></em><em><u>)</u></em>
<u>Second</u><u> </u><u>case</u><u>,</u>
Perimeter of the rectangle
= 2(length + width)
= 2(6.5 + 7.3)m
= 2 × 13.8 m
= <em><u>27</u></em><em><u>.</u></em><em><u>6</u></em><em><u> </u></em><em><u>m</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em><em><u>(</u></em><em><u>ii</u></em><em><u>)</u></em>
Answer:
6.5 seconds
Step-by-step explanation:
Keep in mind that when
, this is the same height for both when the model rocket takes off and lands, so when the rocket lands, time is positive. Thus:

So, the amount of seconds that the model rocket stayed above the ground since it left the platform is 6.5 seconds