Answer:
Mass of the cart = 146 kg
Explanation:
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal.
The cart accelerates at 1.4 m/s² horizontally.
Horizontal force = Fcosθ = 250 cos35° = 204.79N
We have F = ma
Substituting
204.79 = m x 1.4
m = 146.28 kg = 146 kg
Mass of the cart = 146 kg
Answer:
La aceleración del camión que parte del reposo y alcanza la velocidad de 40 km/h en 5 segundos es de 2.22 m/s².
Answer:
1a.5km
2a. 31536000 seconds
2b.2800000 centimeters
2c.45,000,000 Milligrams
2d.0.0141667 m/s
2e.2.592 x 10^10 km/day
2f .8.23x10^-7m
2g.0.0000085 m3
Explanation:
1a.(25km/5)(1000m/1km)(1h/3600s) =(5km)( 1) (1) =5km
pls mark as brainliest
So obviously the 20N pulls more than the 5N. Friction opposes direction of motion, so the 5N opposes the 20N and the two forces are against each other.
Net force would be in the direction of the 20N force: 20N - 5N = 15N.
Force = mass*acceleration
15 = (5)*acceleration
acceleration = 3m/s^2
A magnetic field is actually generated by a moving current (or moving electric charge specifically). The magnetic field generated by a moving current can be found by using the right hand rule, point your right thumb in the direction of current flow, then the wrap of your fingers will tell you what direction the magnetic field is. In the case of current traveling up a wire, the magnetic field generated will encircle the wire. Similarly electromagnets work by having a wire coil, and causing current to spin in a circle, generating a magnetic field perpendicular to the current flow (again right hand rule).
So if you were to take a permenant magnet and cut a hole in it then string a straight wire through it... my guess is nothing too interesting would happen. The two different magnetic fields might ineteract in a peculiar way, but nothing too fascinating, perhaps if you give me more context as to what you might think would happen or what made you come up with this question I could help.
Source: Bachelor's degree in Physics.