Answer: option (D)
Explanation:
The potential energy of each of the students is given below as
P.E(student A) = mgh, where m = mass of student A, g is acceleration due to gravity and h = height of the high dive structure.
The mass of student B is twice as much as that of A, hence his mass is 2m and his potential energy is given below as
P.E ( student B) =2mgh = 2(mgh)
Recall that the relationship between potential energy and work done is that
Work done = - (change in potential)
For student A, work done = - mgh
For student B, work done = - 2mgh
From the equations above it can be seen that student B will do twice the work in getting to the high dive structure than student A hence validating option D.
Answer:
All of the above
Explanation:
Sound waves are mechanical waves consisting of the oscillations of the particles in a medium. They are longitudinal waves, which means that the vibrations of the particles occur in a direction parallel to the direction of propagation of the wave.
This type of wave consists of alternating regions where:
- the density of the particles is higher: these regions are called compressions, and they correspond to high pressure regions
- the density of the particles is lower: these regions are called rarefactions, and they correspond to low pressure regions
The formula used in calculations relating to transformers
is:
<span>Secondary voltage
(Vs)/ Primary voItage (VP) = Secondary turns (nS)/
Primary turns (nP)</span>
Substituting the
given values to find for Vs,
Vs / 120 V = 400
turns / 100 turns
<span>Vs = 480 V</span>
Answer:
kg m/s
Explanation:
e = Charge = C
V = Voltage = 
c = Speed of light = m/s
Momentum is given by

The unit of MeV/c in SI fundamental units is kg m/s
Answer:
0.0003 m = 0.3 mm
Explanation:
For constructive interference in the Young's experiment.
The position of the mth fringe from the central fringe is given by
y = L(mλ/d)
λ = wavelength = 720 nm = 720 × 10⁻⁹ m
L = distance between slits and screen respectively = 1.0 m
d = separation of slits = 0.68 mm = 0.68 × 10⁻³ m
m = 2
y = 1(2 × 720 × 10⁻⁹/(0.68 × 10⁻³) = 0.00212 m = 2.12 mm
For the 620 nm light,
y = 1(2 × 620 × 10⁻⁹/(0.68 × 10⁻³) = 0.00182 m = 1.82 mm
Distance apart = 2.12 - 1.82 = 0.3 mm = 0.0003 m