F = m . g = 76.5 x 9..8 = 749.7
Net Force = 3225 - 749.7 = 2475.3
F = m.a
2475.3 = 76.5 a
a = 32.35
V = at + v1
V = at + 0
V = 32.35 x 0.15
V = 4.8525
Hope this helps
<span>
The taut guitar string haspotencial energy which we can see in action.</span> <span>· so option a is correct.</span>
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :
t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :
Here, a = -g
h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
electrons
Explanation:
The total charge Q is the sum of the charge of the N electrons contained in the sphere:
charge of a electron
We solve to find N:
Explanation:
1. Height Relatives to reference point, Mass, and strength of the gravitational field it's in
2. Distance in the magnetic field