The normal force is the supporting force that is exerted on an object that is in contact with another stable object.
Answer: Option C
<u>Explanation:
</u>
Normal force is forward or upward pushing force acting on an object. Mostly the normal force acts as supporting force exerted on the object by the neighbouring stable object with which the object in question is in contact. So normal force falls under the category of contact forces.
Generally, normal force will be acting to support the weight of any object placed on another object. The best examples of normal forces are the weight of the book supported by table or by the pushing force of the wall on the person leaning on the wall.
Answer:
A) Propagation of pressure fluctuations in a medium
B) air is the medium in which the wave is transported,
Explanation:
Part A.
A sound wave is a longitudinal oscillation of the molecules that forms in a material medium, they can be solid, liquid or gases, therefore the wave propagates in the same direction as the oscillation of the particles.
The most correct answer is:
* Propagation of pressure fluctuations in a medium
Part b
air is the medium in which the wave is transported, otherwise it cannot propagate
The first thing you should know for this case is that density is defined as the quotient between mass and volume:
D = M / V
In addition, you should keep in mind the following conversion:
1Kg = 1000g
Substituting the values we have:
D = (23.0 * 1000) / (2920) = 7.88 g / cm ^ 3
answer
the density of the iron plate is 7.88 g / cm ^ 3
Answer:
a. 572Btu/s
b.0.1483Btu/s.R
Explanation:
a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.
From table A-3E, the specific heat of water is
, and the steam properties as, A-4E:

Using the energy balance for the system:

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s
b. Heat gained by the water is equal to the heat lost by the condensing steam.
-The rate of steam condensation is expressed as:

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R