<span>Simplifying
(6a + -8b)(6a + 8b) = 0
Multiply (6a + -8b) * (6a + 8b)
(6a * (6a + 8b) + -8b * (6a + 8b)) = 0
((6a * 6a + 8b * 6a) + -8b * (6a + 8b)) = 0
Reorder the terms:
((48ab + 36a2) + -8b * (6a + 8b)) = 0
((48ab + 36a2) + -8b * (6a + 8b)) = 0
(48ab + 36a2 + (6a * -8b + 8b * -8b)) = 0
(48ab + 36a2 + (-48ab + -64b2)) = 0
Reorder the terms:
(48ab + -48ab + 36a2 + -64b2) = 0
Combine like terms: 48ab + -48ab = 0
(0 + 36a2 + -64b2) = 0
(36a2 + -64b2) = 0
Solving
36a2 + -64b2 = 0
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '64b2' to each side of the equation.
36a2 + -64b2 + 64b2 = 0 + 64b2
Combine like terms: -64b2 + 64b2 = 0
36a2 + 0 = 0 + 64b2
36a2 = 0 + 64b2
Remove the zero:
36a2 = 64b2
Divide each side by '36'.
a2 = 1.777777778b2
Simplifying
a2 = 1.777777778b2
Take the square root of each side:
a = {-1.333333333b, 1.333333333b}</span>
Answer:
•A c-chart is the appropriate control chart
• c' = 8.5
• Control limits, CL = 8.5
Lower control limits, LCL = 0
Upper control limits, UCL = 17.25
Step-by-step explanation:
A c chart is a quality control chart used for the number of flaws per unit.
Given:
Past inspection data:
Number of units= 100
Total flaws = 850
We now have:
c' = 850/100
= 8.5
Where CL = c' = 8.5
For control limits, we have:
CL = c'
UCL = c' + 3√c'
LCL = c' - 3√c'
The CL stands for the normal control limit, while the UCL and LCL are the upper and lower control limits respectively
Calculating the various control limits we have:
CL = c'
CL = 8.5
UCL = 8.5 + 3√8.5
= 17.25
LCL = 8.5 - 3√8.5
= -0.25
A negative LCL tend to be 0. Therefore,
LCL = 0
get the equation in slope intercept form
2x-3y=9
subtract 2x from each side
-3y = -2x +9
divide by -3
y = 2/3 x -3
slope = 2/3
y intercept = -3
x intercept set y=0 and solve
0 = 2/3 x -3
add 3 to each side
3 = 2/3 x
multiply each side by 3/2
9/2 = x
the x intercept is 9/2 or 4 1/2
Step-by-step explanation:
First u hv to understand what is asked. Here, u have to find the intersecting numbers from the set A and not included in set B. Thus, u know except foe 2,4,6,8, othher numbers are not in set B. Set A is included 1,2,3,4,5. In this way u can simply find AnB' as AnB'={1,3,5}