Answer:
There are 59.147 millimeters in 12 teaspoons!
Step-by-step explanation:
Answer:
y- intercept --> Location on graph where input is zero
f(x) < 0 --> Intervals of the domain where the graph is below the x-axis
x- intercept --> Location on graph where output is zero
f(x) > 0 --> Intervals of the domain where the graph is above the x-axis
Step-by-step explanation:
Y-intercept: The y-intercept is equivalent to the point where x= 0. 'x' is the input variable in an equation, therefore the y-intercept is where the input, or x, is equal to 0.
f(x) <0: Notice the 'lesser than' sign. This means that the value of f(x), or 'y', is less than 0. This means that this area consists of intervals of the domain below the x-axis.
X-intercept: The x-intercept is the location of the graph where y= 0, or the output is equal to 0.
f(x) >0: In this, there is a 'greater than' sign. This means that f(x), or 'y', is greater than 0. Therefore, this consists of intervals of the domain above the x-axis.
Yes it is because 18÷6 is 3 and 6×3=18
Let b be the number of blue beads and g the number of green beads that Giovanni can use for a belt.
He's supposed to use a total of between 70 and 74 beads, so
70 ≤ b + g ≤ 74
The ratio of green beads to blue beads is g/b, and this ratio has to be between 1.4 and 1.6, so
1.4 ≤ g/b ≤ 1.6
For completeness, Giovanni must use at least one of either bead color, so it sort of goes without saying that this system must also include the conditions
b ≥ 0
g ≥ 0
(These conditions "go without saying" because they are implied by the others. g/b is a positive number, so either both b and g are positive, or they're both negative. But they must both be positive, because otherwise b + g would be negative. I would argue for including them, though.)