The answer to this is 2x<12
Answer:
Quadrant I: (1,1), (4,3)
Quadrant II: (-2, 3), (-1, 1)
Step-by-step explanation:
Quadrant I points have positive x and y values. Quandrant II points have negative x values and positive y values.
Answer:
As X → - ∞ , y → ∞ and as x→ ∞ , y → ∞
<h3>
option c is the correct option.</h3>
Step-by-step explanation:
let f(x) = y = 3x² - 5x + 2
y = 3x² - 5x + 2
= x ( 3x - 5 ) + 2
y = ∞ ( 3 ( ∞ - 5 ) ) + 2
= ∞ (∞ ) + 2
y = ∞
y → ∞ as x → ∞
Now,
as x → - ∞
y = x ( 3x - 5 ) + 2
= ∞ ( 3 ( - ∞ ) - 5 ) + 2
= - ∞ ( - ∞ ) + 2
∞² + 2 = ∞
Hence , Option C is the correct answer.
Answer:

Explanation:
Factor Out
From 
= 
Factor Out Common Term 5x + 1
= 
