The simplified rational expression is (y - 3)/(y + 3). Where y ≠ -3.
<h3>How to simplify a rational expression?</h3>
A rational expression is in the p/q form. Where p and q are polynomial functions.
To simplify this rational equation,
- Factorize the polynomials in both numerator and denomiantor.
- Cancel out common factors if any.
- If the denominator and the numerator have no common factors except 1, then that is said to be the simplest form of the given rational expression.
<h3>Calculation:</h3>
The given rational equation is

Factorizing the expression in the numerator:
y² - 12y + 27 = y² - 9y - 3y + 27
⇒ y(y - 9) - 3(y - 9)
⇒ (y - 3)(y - 9)
Factorizing the expression in the denominator:
y² - 6y - 27 = y² - 9y + 3y - 27
⇒ y(y - 9) + 3(y - 9)
⇒ (y + 3)(y - 9)
Since they have (y - 9) as the common factor, we can simplify,

⇒ (y - 3)/(y + 3) where y ≠ -3(denomiantor)
Here there are no more common factors except 1; this is the simplest form of the given rational expression.
Learn more about simplifying rational expressions here:
brainly.com/question/1928496
#SPJ9
Answer:
tasha got 1/2 of it
one friend got 1/4 of it
the other friend got 1/4 of it
Step-by-step explanation:
Your thinking of the number 69
Answer:
-10/f-6f
Step-by-step explanation:
simplify it the equation
let's bear in mind that sin(θ) in this case is positive, that happens only in the I and II Quadrants, where the cosine/adjacent are positive and negative respectively.
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{5}}{\stackrel{hypotenuse}{6}}\qquad \impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-5^2}=a\implies \pm\sqrt{36-25}\implies \pm \sqrt{11}=a \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B6%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B6%5E2-5%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B36-25%7D%5Cimplies%20%5Cpm%20%5Csqrt%7B11%7D%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
