1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
9

Two parallel-plate capacitors have the same plate area. Capacitor 1 has a plate separation twice that of capacitor 2, and the qu

antity of charge you place on capacitor 1 is four times the quantity you place on capacitor 2. Part A How do the potential differences across each of the two capacitors compare to each other?
Physics
1 answer:
Luba_88 [7]3 years ago
6 0

Answer:

V_1=8 V_2

Explanation:

Given that:

  • Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
  • separation distance of capacitor 2, d_2=d
  • separation distance of capacitor 1, d_1=2d
  • quantity of charge on capacitor 2, Q_2=Q
  • quantity of charge on capacitor 1, Q_1=4Q

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.

Mathematically given as:

C=\frac{k.\epsilon_0.A}{d}.....................................(1)

where:

k = relative permittivity of the dielectric material between the plates= 1 for air

\epsilon_0 = 8.85\times 10^{-12}\,F.m^{-1}

From eq. (1)

For capacitor 2:

C_2=\frac{k.\epsilon_0.A}{d}

For capacitor 1:

C_1=\frac{k.\epsilon_0.A}{2d}

C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]

We know, potential differences across a capacitor is given by:

V=\frac{Q}{C}..........................................(2)

where, Q = charge on the capacitor plates.

for capacitor 2:

V_2=\frac{Q}{\frac{k.\epsilon_0.A}{d}}

V_2=\frac{Q.d}{k.\epsilon_0.A}

& for capacitor 1:

V_1=\frac{4Q}{\frac{k.\epsilon_0.A}{2d}}

V_1=\frac{4Q\times 2d}{k.\epsilon_0.A}

V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]

V_1=8 V_2

You might be interested in
Un objeto que tiene como masa 80 kg acelera a razón de 10 m/s2 ¿que fuerza lo impulzo
Gemiola [76]

Answer:

What

Explanation:

7 0
2 years ago
Read 2 more answers
Sunlight travels 150,000,000 km from the sun to the earth because of?
padilas [110]
The Speed of Light.
Photons emitted from the surface of the sun to travel across the vacuum of space to reach out eyes
8 0
3 years ago
The wavelength of a wave on a string is 1.2 meters. If the speed of the wave is 60 meters/second, what is its frequency?
maria [59]
F=v/wavelength f=1.2/60=50Hz.
8 0
2 years ago
Read 2 more answers
"The White Shark" allows riders to start from rest on a tube and then slide down a 44 meter slide. It takes the rider 6.2 second
Leni [432]
<span>Acceleration is the rate of change of the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. Calculations of such is straightforward, if we are given the final velocity, the initial velocity and the total time interval. However, we are not given these values. We are only left by using the kinematic equation expressed as:

d = v0t + at^2/2

We cancel the term with v0 since it is initially at rest,

d = at^2/2
44 = a(6.2)^2/2
a = 2.3 m/s^2



 </span>
6 0
2 years ago
A fireboat is to fight fires at coastal areas by drawing seawater with a density of 1030 kg/m3 through a 10-cm-diameter pipe at
GaryK [48]

Answer:

50.93 m/s

199.5 kW

Explanation:

From the question, the nozzle exit diameter = 5 cm, Radius= diameter/2= 5cm/2= 2.5cm. we can convert it to metre for unit consistency= (2.5×0.01)=

0.025m

We can calculate the The cross sectional area of the nozzle as

A= πr^2

A= π ×0.025^2

= 1.9635 ×10^- ³ m²

From the question, the water is moving through the pipe at a rate of 0.1 m /s , then for the water to move through it at a seconds, it must move at

(0.1 / 1.9635 ×10^- ³ m²)

= 50.93 m/s

During the Operation of the pump, the Dynamic energy of the water= potential energy provided there is no loss during the Operation

mgh = 1/2mv²

We can make "h" subject of the formula, which is the height of required head of water

h = (1/2mv²)/mg

h= v² / 2g

h = 50.93² / (2 ×9.81)

h = 132.21m

From the question;

The total irreversible head loss of the system = 3 m,

the given position of nozzle = 3 m

the total head the pump needed=(The total irreversible head loss of the system + the position of the nozzle + required head of water )

=(3 + 3 + 132.21m)

=138.21m

mass of water pumped in a seconds can be calculated since we know that mass is a product of volume and density

Volume= 0.1m³

Density of sea water=1030 kg/m

(0.1 m^3× 1030)

= 103kg

We can calculate the Potential enegry, which is = mgh

= (103 ×9.81 × 138.21)

= 139651.5 Watts

= 139.65kW

To determine required shaft power input to the pump and the water discharge velocity

Energy= efficiency × power

But we are given efficiency of 70 percent, then

139651.5 Watts = 0.7P

=199502.18 Watts

P=199.5 kW

Therefore, the required shaft power input to the pump and the water discharge velocity is 199.5 kW

5 0
2 years ago
Other questions:
  • Name the part of the eye that regulates the size of the passage through which light enters.
    5·1 answer
  • What is the velocity of a rocket that goes 700 km north in 25 seconds?
    13·1 answer
  • A student increases the temperature of a 300 cm^3 balloon from 30c to 60c. what will the new volume of the ballon be
    11·2 answers
  • Can you tell me at least three states of matter that are fluids?
    5·1 answer
  • What is the purpose of the coagulation step in water treatment?
    8·1 answer
  • A 155.0 g piece of copper at 168 oc is dropped into 250.0 g of water at 20.9 oc. (the specific heat of copper is 0.385 j/goc.) c
    5·2 answers
  • If the ball increases from 1 m/s to 2 m/s, by how much would<br> kinetic energy increase
    9·1 answer
  • How long will a plane have to fly continuously with 900 miles per hour in order to cover the same distance as that from Earth to
    14·1 answer
  • Help uhh i need to know this answer
    12·1 answer
  • A 7.3 kg bowling ball would require how much force if you use a broom to
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!