Answer:
v after 5s = 0.25 m/s, it took 10s to stop, it has traveled 2.5m before stopping
Explanation
We can use the equation of motion with constant acceleration
Given: v0= 0.5 m/s a= -0.05 m/s²
v(5s) = v0 + a×t = 0.25 m/s
Stop => v=0 => v0 + a×t = 0 => t=10s
Distance at t=10s ⇒ x(10) = 0.5×10 + 0.5x(-0.05)x10² = 2.5m
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
Answer:
Power factor of the AC series circuit is 
Explanation:
It is given that,
Impedance of the AC series circuit, Z = 60 ohms
Resistance of the AC series circuit, R = 30 ohms
We need to find the power factor of the circuit. It is given by :




So, the power factor of the ac series circuit is
. Hence, this is the required solution.
Answer:
The acceleration of the car will be 
Explanation:
We have given that distance from stop sign s = 200 m
Time t = 0.2 sec
We have to find the constant acceleration
Now from second equation of motion 


So the acceleration of the car will be 