so you can see all the different categories at once. both as a whole and on an individual scale.
<em>The correct answer is option</em><em> B.</em> The maximum height that can be reached by the stone is determined as 11.5 m.
<h3>
Maximum height attained by the stone </h3>
The maximum height attained by the stone when it is a 2/3 of its total height is calculated as follows;
v² = u² - 2gh
where;
- v is final velocity at maximum height, v = 0
- u is initial velocity
- g is acceleration due to gravity
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (15²)/(2 x 9.8)
h = 11.48 m
h = 11.5 m
Thus, the maximum height that can be reached by the stone is determined as 11.5 m
Learn more about maximum height here: brainly.com/question/12446886
#SPJ1
From p1v1/t1 = p2v2/t2
pressure unchanged ... cancelled out
v1=605 , t1=27C = 300K,
t2=-3C = 270K
***remember temperature must be in Kelvin
we got
605/300 = v2/270
v2 = 545
Answer:
5m
Explanation:

Use the Pythagorean theorem to calculate the long edge of the triangle, which would be his displacement.
Answer:
3.46 seconds
Explanation:
Since the ball is moving in circular motion thus centripetal force will be acting there along the rope.
The equation for the centripetal force is as follows -
Where,
is the mass of the ball,
is the speed and
is the radius of the circular path which will be equal to the length of the rope.
This centripetal force will be equal to the tension in the string and thus we can write,

and, 
Thus,
m/s.
Now, the total length of circular path = circumference of the circle
Thus, total path length = 2πr = 2 × 3.14 × 2 = 12.56 m
Time taken to complete one revolution =
=
= 3.46 seconds.
Thus, the mass will complete one revolution in 3.46 seconds.