Answer:
23.52 m/s
Explanation:
The following data were obtained from the question:
Time taken (t) to reach the maximum height = 2.4 s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =..?
At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)
was thrown as follow:
v = u – gt (since the rock is going against gravity)
0 = u – (9.8 × 2.4)
0 = u – 23.52
Collect like terms
0 + 23.52 = u
u = 23.52 m/s
Therefore, the rock was thrown at a velocity of 23.52 m/s.
When the reactants are heated, the average kinetic energy of the molecules increases. This means that more molecules are moving faster and hitting each other with more energy. If more molecules hit each other with enough energy to react, then the rate of the reaction increases.
Newton's third law of motion states that for any action, there is equal and opposite force. For a person standing on a floor, the action force is the weight and thus the floor must exert an opposite and equal reaction force equivalent in magnitude to the weight of the person.
In this regard, statement 3. is correct.
B. A sandbar is formed by water. A sand dune is formed by wind.