<h2>
Answer: Nazca plate</h2>
Explanation:
The Nazca plate is an oceanic tectonic plate that is found in the Pacific Ocean off the west coast of South America, specifically in front of the north and central coast of Chile and the entire coastline of Peru, Ecuador and Colombia. This plate is in constant motion, which causes it to sink under the South American (phenomenon known as subduction).
It is mainly because of this subduction process that this region has a lot of seismic activity. Another important aspect is that thanks to these movements, the Andes mountain range and the Peruvian-Chilean fossa originated.
Answer: Mass affects the weight of an object with the effects of gravity.
Weight is the measure of the force of gravity on an object's mass, while mass is the measure of how much matter there is in an object.
To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.
PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation

Where,
G = Gravitational Universal Constant
d = Distance
M = Mass
Radius earth center of mass
PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,



PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is

At the same time we have that centripetal acceleration is given as

Replacing



The correct answer should be C
Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.