<span>#include <iostream>
using namespace std;
class InventoryTag {
public:
InventoryTag();
int getQuantityRemaining() const;
void addInventory(int numItems);
private:
int quantityRemaining;
};
InventoryTag::InventoryTag() {
quantityRemaining = 0;
}
int InventoryTag::getQuantityRemaining() const {
return quantityRemaining;
}
void InventoryTag::addInventory(int numItems) {
if (numItems > 10) {
quantityRemaining = quantityRemaining + numItems;
}
}
int main() {
InventoryTag redSweater;
int sweaterShipment = 0;
int sweaterInventoryBefore = 0;
sweaterInventoryBefore = redSweater.getQuantityRemaining();
sweaterShipment = 25;
cout << "Beginning tests." << endl;
// FIXME add unit test for addInventory
/* Your solution goes here */
cout << "Tests complete." << endl;
return 0;
}</span>
Answer:
Step-by-step explanation:
Given the following :
- - - Jhs
Basic level - - - - Boys - - - - Girls - - - - Total
Primary - - - - - - - 49 - - - - - - 51 - - - - - - 100%
Jhs - - - - - - - - - - 56 - - - - - - 44. - - - - - - 100%
With the information above,
Primary Dropout percentage:
BOYS : [49 / (49 +51)] × 100.= 49%
GIRLS : [51 / (49 +51)] × 100.= 51%
Jhs: Dropout percentage
BOYS : [56 / ( 56 + 44) × 100 = 56%
GIRLS : [44 / (44 +56)] × 100.= 44%
Answer:
120% of 100. 20% of 800. 500% of 400. 1% of 1,000
Hope this helps :)
Answer:
∠ABC = 50°
Step-by-step explanation:
Since this is a parallelogram, opposite angles are congruent.
Therefore, ∠D ≅ ∠B
∠D = 38° + 12°
∠B = 38° + 12°
∠B = 50°
∠ABC = 50°