1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anuta_ua [19.1K]
3 years ago
5

There were six sisters, every sister has one brother, how many brothers are there in total

Mathematics
2 answers:
jonny [76]3 years ago
3 0
There is 1 brother as they would all have the same brother.
Alenkasestr [34]3 years ago
3 0
There is only one brother
You might be interested in
an iPad was on sale for 3/4 of its original price. if the original price was 1000 what was the sale price?
KATRIN_1 [288]

Answer:

$750

Step-by-step explanation:

In this problem, you will multiply the fraction by the total price to find the sale price.

Sale price = 1000 × (3/4)

Sale price = 1000 × 3 / 4

Sale price = 3000 / 4

Sale price = 750

Therefore the sale price is $750

3 0
3 years ago
Please help!! Thank you so much
stiv31 [10]

Answer:

I think answer is

b. (2,1)

:-)

5 0
3 years ago
Which restriction is appropriate for the variable 4a + 12 / a + 3
bonufazy [111]

I'll presume the slash is the fraction bar and the questioner is asking about

\dfrac{4a+12}{a+3}

That always equals 4 except when a=-3

So the restriction is

Answer:  a ≠ -3

5 0
2 years ago
Read 2 more answers
Problem: The height, X, of all 3-year-old females is approximately normally distributed with mean 38.72
Lisa [10]

Answer:

0.1003 = 10.03% probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

Gestation periods:

1) 0.3539 = 35.39% probability a randomly selected pregnancy lasts less than 260 days.

2) 0.0465 = 4.65% probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less.

3) 0.004 = 0.4% probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less.

4) 0.9844 = 98.44% probability a random sample of size 15 will have a mean gestation period within 10 days of the mean.

Step-by-step explanation:

To solve these questions, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The height, X, of all 3-year-old females is approximately normally distributed with mean 38.72 inches and standard deviation 3.17 inches.

This means that \mu = 38.72, \sigma = 3.17

Sample of 10:

This means that n = 10, s = \frac{3.17}{\sqrt{10}}

Compute the probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

This is 1 subtracted by the p-value of Z when X = 40. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{40 - 38.72}{\frac{3.17}{\sqrt{10}}}

Z = 1.28

Z = 1.28 has a p-value of 0.8997

1 - 0.8997 = 0.1003

0.1003 = 10.03% probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

Gestation periods:

\mu = 266, \sigma = 16

1. What is the probability a randomly selected pregnancy lasts less than 260 days?

This is the p-value of Z when X = 260. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{260 -  266}{16}

Z = -0.375

Z = -0.375 has a p-value of 0.3539.

0.3539 = 35.39% probability a randomly selected pregnancy lasts less than 260 days.

2. What is the probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less?

Now n = 20, so:

Z = \frac{X - \mu}{s}

Z = \frac{260 - 266}{\frac{16}{\sqrt{20}}}

Z = -1.68

Z = -1.68 has a p-value of 0.0465.

0.0465 = 4.65% probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less.

3. What is the probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less?

Now n = 50, so:

Z = \frac{X - \mu}{s}

Z = \frac{260 - 266}{\frac{16}{\sqrt{50}}}

Z = -2.65

Z = -2.65 has a p-value of 0.0040.

0.004 = 0.4% probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less.

4. What is the probability a random sample of size 15 will have a mean gestation period within 10 days of the mean?

Sample of size 15 means that n = 15. This probability is the p-value of Z when X = 276 subtracted by the p-value of Z when X = 256.

X = 276

Z = \frac{X - \mu}{s}

Z = \frac{276 - 266}{\frac{16}{\sqrt{15}}}

Z = 2.42

Z = 2.42 has a p-value of 0.9922.

X = 256

Z = \frac{X - \mu}{s}

Z = \frac{256 - 266}{\frac{16}{\sqrt{15}}}

Z = -2.42

Z = -2.42 has a p-value of 0.0078.

0.9922 - 0.0078 = 0.9844

0.9844 = 98.44% probability a random sample of size 15 will have a mean gestation period within 10 days of the mean.

8 0
3 years ago
Find the perimeter of a rectangle with a length of 6x+3 and a width of -2x-5.
blsea [12.9K]
The simple way of calculating a perimeter is to add all of the sides.
For a rectangle this would equal 2 x length + 2 x width
P = 2(6x + 3) + 2(-2x - 5)
= 12x + 6 - 4x - 10
= 8x - 4

At a higher level both the length and width must be greater than zero (= zero is a trivial rectangle)
6x + 3 > 0
6x > -3
x > -0.5

-2x - 5 > 0
2x + 5 < 0 (multiplying by -1 reverses the inequality)
2x < -5
x < -2.5

This rectangle cannot exist as x cannot be < -2.5 and > -0.5 at the same time!
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is 22 times 24? Then check with estimation
    9·1 answer
  • Tan42 = 7 divided by x. what is the value of x?
    7·1 answer
  • How do write 412.638 using expanded form using decimals
    5·1 answer
  • Line k is vertical and contains the point (8,3). Which of the following equations represents line k?
    15·1 answer
  • Simplify the expression. - 17b + a +235 + 240​
    9·2 answers
  • Jen and Nikki are making bracelets to sell at the local market. They determined
    11·1 answer
  • Jamison reud 14 chapters of his book. The book has 31 chapter. How many chaptere does he have left to read?​
    14·2 answers
  • Which expression is equivalent to 3(m) + m
    12·2 answers
  • Which is the solution set for 2x + 10 &lt; 40
    5·1 answer
  • Kevin studied the effects of video games on antisocial behavior. Which of these is a response variable?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!