<span>For the answer to the question above, flowers of corn are pollinated by the wind. They are small and lightweight to allow easy pollination by the wind. They do not need to attract animals or insects and are therefore colorless and odorless.</span>
The answer to the question is B - The lungs exhale carbon dioxide, which is a waste gas and needs to be removed from the body.
The order is calcification of matrix >> cells differentiate into osteoblasts >> formation of the primary ossification >> osteoclasts break down the spongy bone >> formation of the secondary ossification (5,3,1,2,4). It is a fundamental process.
<h3>What are osteoblasts?</h3>
Osteoblasts are cells of the bones, which act to generate bone matrix and modulate the process of mineralization of the skeleton.
Endochondral ossification refers to the mechanism through which the cartilaginous bones generate longitudinal growth.
This mechanism (endochondral ossification) is fundamental during fetal/embryo development.
Learn more about endochondral ossification here:
brainly.com/question/5325975
Answer and Explanation:
Protein is one of the most important molecules in our organism, being present in the composition of all elements, in addition to participating in several metabolic processes. This importance creates the need to study this molecule, however, to study it it is necessary to know the composition chemistry and the levels of structure it presents.
The chemical composition of proteins is related to amino acids, since protein is formed by them. In this case, we can say that the proteins have the same composition as the amino acids containing carboxylic acid and different amino groups, which is what determines the name and function of the amino acid.
In addition to chemical composition, the structure levels of proteins are extremely important, as they only function at a specific structural level. As for these levels, proteins can have a primary structure (there are more than two amino acids organized in a linear row), a secondary structure (when the primary structure turns into a helix species), a tertiary structure (formed by a more intense folding of the secondary structure providing the appearance of helices and leaves) and quarternary structure (when several tertiary structures are joined, allowing folding at the three-dimensional level. This is the functional structure of the protein).