Answer:
11.35 g/cm³
Explanation:
If your rounding then 11.4. hope this helps :)
Answer:
4.4 mol.
Explanation:
Hello!
In this case, since the formula for calculating the molarity is:

Whereas n stands for moles and V for the volume in liters; we can solve for n as shown below when we are given the volume and the molarity:

Thus, we plug in the given data to obtain:

Best regards!
When a specific amount of energy is emitted when excited electrons in an atom in a sample of an element return to the ground state, this emitted energy can
<span>be used to determine the "identity of the element".</span>
Velocity is defined as displacement over time. Could you have possible meant viscosity? If so, viscosity is defined as the state of being thick, sticky, and semifluid in consistency, due to internal friction. And example of a substance with a high viscosity would be honey.
Answer:
0.208mole of CO2
Explanation:
First, let us calculate the number of mole of HC3H3O2 present.
Molarity of HC3H3O2 = 0.833 mol/L
Volume = 25 mL = 25/100 = 0.25L
Mole =?
Mole = Molarity x Volume
Mole = 0.833 x 0.25
Mole of HC3H3O2 = 0.208mole
Now, we can easily find the number of mole of CO2 produce by doing the following:
NaHCO3 + HC2H3O2 → NaC2H3O2 + H2O + CO2
From the equation,
1mole of HC2H3O2 produced 1 mole of CO2.
Therefore, 0.208mole of HC2H3O2 will also produce 0.208mole of CO2