B. slows down is your answer, obviously as it approaches carrying capacity, there would be less available space to find in the place of inhabitance, so less and less population units would be able to find the place of inhabitance suitable for living, or can't find enough space to live in.
Answer:
The final temperature at 1050 mmHg is 134.57
or 407.57 Kelvin.
Explanation:
Initial temperature = T = 55
= 328 K
Initial pressure = P = 845 mmHg
Assuming final to be temperature to be T' Kelvin
Final Pressure = P' = 1050 mmHg
The final temperature is obtained by following relation at constant volume

The final temperature is 407.57 K
Answer:
S(s) + O2(g) --> SO2(g)
Upper S (s) plus upper O subscript 2 (g) right arrow with delta above upper S upper O subscript 2 (g).
Explanation:
The reaction is given as;
Sulfur + oxygen --> Sulphur dioxide
Sulphur = S
Oxygen = O2
Sulfur dioxide = SO2
So we have;
S(s) + O2(g) --> SO2(g)
The crrect option is option A. Upper S (s) plus upper O subscript 2 (g) right arrow with delta above upper S upper O subscript 2 (g).
Answer:
293.1 mL.
Explanation:
- Boyle's law states that: at a constant temperature the pressure of a given mass of an ideal gas is inversely proportional to its volume.
- It can be expressed as: <em>P₁V₁ = P₂V₂,</em>
P₁ = 546.0 mm Hg, V₁ = 350.0 mL.
P₂ = 652.0 mm Hg, V₂ = ??? mL.
<em>∴ V₂ = (P₁V₁)/(P₂)</em> = (546.0 mm Hg)(350.0 mL) / (652.0 mm Hg) = <em>293.1 mL.</em>
There are a number of methods of which we can form sodium bicarbonate. This compound is commonly known as baking soda. It can be prepared from the reaction of sodium hydroxide and carbonic acid. Carbonic acid in water dissociates into hydrogen ions and the bicarbonate ion while sodium hydroxide would ionize into sodium ions and hydroxide ions. With this, these ions would react and form the sodium bicarbonate salt and water. The chemical reaction would be expressed as follows:
NaOH + H2CO3 = H2O + NaHCO3
Sodium bicarbonate is used in cooking, as a toothpaste and as a cleaning substance. Also, it is used in medical applications like for the preparation of the dialysate solution.