Answer:
31.24 kJ
Explanation:
- SiO₂(g) + 3C(s) → SiC(s) + 2CO(g) ΔH° = 624.7 kJ/mol
First we <u>convert 3.00 grams of SiO₂ to moles</u>, using its <em>molar mass</em>:
- 3.00 g SiO₂ ÷ 60.08 g/mol = 0.05 mol
Now we <u>calculate the heat absorbed</u>, using the <em>given ΔH°</em>:
If the complete reaction of 1 mol of SiO₂ absorbs 624.7 kJ, then with 0.05 mol:
- 0.05 mol * 624.7 kJ/mol = 31.24 kJ of heat would be absorbed.
When you are collecting DNA, you could be looking for a few different things. A few examples could be skin cells, strands of hair, or possibly even a fingernail. Anything that comes from a person, including blood or saliva can be potential DNA that could help investigators to link a person back to a crime.
Investigators do not need a warrant for analyzing crime scenes due to the fact of the dangers of the fire. You must work quickly because accelerants tend to evaporate within days, sometimes hours. It is also important to note that finding the origin of the fire is very important, to make sure it won't be reignited. Debris is usually cleaned away quickly to ensure health and safety issues.
The point of origin of a fire is the lowest point, since fire burns upwards.
High explosive: Ignite almost instantly, like dynamite and TNT. Two different types are primary and secondary.
<em>Primary: easily ignited, very sensitive to heat and friction. often used to ignite other explosives. </em>
<em>Secondary: much less sensitive to heat and friction, might be ignited using other explosive materials. TNT and dynamite are both secondary. </em>
Low explosive: decompose slowly and include black and smokeless powder. They are the most common type of explosives, and are readily available.
Answer:
The answer to your question is M = 36.49 g
Explanation:
Data
mass = 8.21 g
volume = 4.8064 L
Temperature = 200°C
Pressure = 1.816 atm
M = ?
Process
1.- Convert temperature to °K
°K = 273 + 200
°K = 473
2.- Calculate the number of moles
n = (PV)/RT
n = (1.816)(4.8064)/(0.082)(473)
n = 0.225
3.- Calculate the molar mass
M --------------- 1 mol
8.21 g ---------- 0.225 moles
M = (1 x 8.21)/0.225
M = 36.49 g
Answer:
Radioactive isotopes ranging from 11O to 26O have also been characterized, all short-lived. The longest-lived radioisotope is 15O with a half-life of 122.24 seconds, while the shortest-lived isotope is 12O with a half-life of 580(30)×10−24 seconds (the half-life of the unbound 11O is still unknown).
In my opinion yes, as of now, almost anyone could get there hands on lets say an explosive. Have you heard of dynamite fishing? It is illegal, but it is still done once people have access to dynamite, then what ends up happening not only do marine wildlife get killed but it pollutes the water and lessens the chance of the natural cycle of life. Also there are several other factors, firstly, what will you do with an explosive once you get your hands on it? Perhaps you could just use an explosive for fun/personal entertainment...that isn't right and it could harm people. So, to conclude the harder it is for people to access explosives or even acclerants the better...and to add this can be possible by making people get like some sort of licence to use them, and let them be trained in certain conditions so that there is no regrets once they have access to them. I know my idea sounds far fetched but its a thought!