Step-by-step explanation:
hjadbs bdsahdgoa
Answer:
y=6
Step-by-step explanation:
edge2020
Answer:
The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.
Step-by-step explanation:
In order to solve this problem we will attribute variables to the ages of Michael and his father. For his father age we will attribute a variable called "f" and for Michael's age we will attribute a variable called "x". The first information that the problem gives us is that Michael's dad is 30 years of age, so we have:
f = 30
Then the problem states that the age of the father is 2 years "more" than four "times" Michaels age. The "more" implies a sum and the "times" implies a product, so we have:
f = 2 + 4*x
We can now find Michael's age, for that we need to isolate the "x" variable. We have:
f - 2 = 4*x
4*x = f - 2
x = (f-2)/4
x = (30 - 2)/4 = 7 years
The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.
Answer:
<h2>14mph</h2>
Step-by-step explanation:
Given the gas mileage for a certain vehicle modeled by the equation m=−0.05x²+3.5x−49 where x is the speed of the vehicle in mph. In order to determine the speed(s) at which the car gets 9 mpg, we will substitute the value of m = 9 into the modeled equation and calculate x as shown;
m = −0.05x²+3.5x−49
when m= 9
9 = −0.05x²+3.5x−49
−0.05x²+3.5x−49 = 9
0.05x²-3.5x+49 = -9
Multiplying through by 100
5x²+350x−4900 = 900
Dividing through by 5;
x²+70x−980 = 180
x²+70x−980 - 180 = 0
x²+70x−1160 = 0
Using the general formula to get x;
a = 1, b = 70, c = -1160
x = -70±√70²-4(1)(-1160)/2
x = -70±√4900+4640)/2
x = -70±(√4900+4640)/2
x = -70±√9540/2
x = -70±97.7/2
x = -70+97.7/2
x = 27.7/2
x = 13.85mph
x ≈ 14 mph
Hence, the speed(s) at which the car gets 9 mpg to the nearest mph is 14mph