Answer:
The equivalent magnetization (EM) and mantle Bouguer anomaly (MBA) were calculated along the ultraslow-spreading Mohns Ridge axis in the Norwegian-Greenland Sea. The magnetic anomaly and the associated EM were compared with the bathymetry, MBA, seismically determined crustal structure and geochemical data at both the inter-segment scale (>60 km) and the intra-segment scale (20–60 km). At the inter-segment scale, the magnetic highs at the segment centers are independent of the MBA. Of the 13 segments, 9 with magnetic anomalies >700 nT coincide with axial volcanic ridges identified from multibeam bathymetry maps, which suggests that the magnetic highs at the segment centers may be more associated with the extrusive lavas rather than the amount of magma supply. With few exceptions, the magnetic anomaly lows associated with MBA highs at the segment ends increase from south to north. This trend might be explained by thickened extrusive basalts and/or more serpentinized peridotites at the segment ends in the north. At the intra-segment scale, the most prominent features are the decreases in the magnetic anomalies and associated EMs from the segment centers to the ends. The intra-segment magnetic anomalies have positive and negative correlations with the bathymetry and MBA, respectively. The magnetic signal modeled by the seismically determined layer 2A with an assumed constant magnetization is remarkably consistent with the observed magnetic anomaly, which strongly suggests that the thickness of the extrusive basalts dominates the magnetic structure in each segment along the Mohns Ridge. In general, the thickness of the extrusive basalts dominates the magnetic structure along the Mohns Ridge, whereas the contributions from serpentinized peridotites may be significant at the segment ends and may produce long-wavelength magnetic variations. The magnetic data can be used as an indicator of the thickness of the extrusive basalts within segments along the ultraslow-spreading Mohns Ridge.
Explanation:
Normally they have equal protons and neutrons
Cannabinoid receptors, located throughout the body, are part of the Endocannabinoid system which is involved in a variety of physiological processes including appetite, pain-sensation, mood, and memory.[1]
Cannabinoid receptors are of a class of cell membrane receptors under the G protein-coupled receptor superfamily. As is typical of G protein-coupled receptors, the cannabinoid receptors contain seven transmembrane spanning domains.[5] Cannabinoid receptors are activated by three major groups of ligands: endocannabinoids, produced by the mammillary body; plant cannabinoids (such as Cannabidiol, produced by the cannabis plant); and synthetic cannabinoids (such as HU-210). All of the endocannabinoids and plant cannabinoids are lipophilic, such as fat soluble compounds.
There is no answer ,you wrote the answers with the question