Let's actually find the roots, using the quadratic formula:
<span>p(x)=x^2+x+3 gives us a=1, b=1 and c=3.
-1 plus or minus sqrt(1^2-4(1)(3))
Then x = -----------------------------------------------
2
The discriminant here is negative, so the roots x will be complex:
-1 plus or minus sqrt(-11) -1 plus or minus i*sqrt(11)
x = ---------------------------------- = -------------------------------------
2 2
These are irrational roots; they cannot be expressed as the ratios of integers.</span>
X = -6y - 12
4x + 5y =-39
4x + 5y = -39
-4(-6y - 12) + 5y = -39
-4(-6y) + 4(12) + 5y = -39
24y + 48 + 5y = -39
29y + 48 = -39
29y = -87
y = -3
x = -6y - 12
x = -6(-3) - 12
x = 28 - 12
x = 6
(x, y) = (6, -3)
B) No, set of side lengths does not satisfy Triangle Inequality Theorem
If u need anything let me k ow I don’t have enough info to answer that