Answer:
2ab(3b^2+2a+4)
Step-by-step explanation:
6ab^3 + 4a^2b + 8ab
2*3*a*b*b^2 +2*2*a*a*b +2*2*2*a*b
Factor out the common terms
2ab( 3*b^2 +2*a +2*2)
2ab(3b^2+2a+4)
This should have been worth more points, but anyways, here are the answers. Please give thanks :)
1.)Y = 5 - 3X<span>
2.) Y= </span><span>3X - 4</span><span>
3.) Y = 7 - X
4.) Y = -5X
5.) Y = </span>X +6 <span>
6.) Y = 5 -3X
7.) Y = 2 +</span>

<span>X
8.) </span>Y =

X - 3<span>
9.) Y= 2 - [</span>tex] \frac{2}{3} [/tex]<span>
10.) Y = 1 - 5X
11.) Y = 2 - </span>

<span>X
12.) Y = -5 -2X
13.) Y = X - 6
14.) Y = </span>

<span> -2X
15.) Y = 2 +</span>

<span>X
16.) Y = 2 +</span>

<span>X
17.) Y = 1 - 5X
18.) Y = </span>[<span>tex] \frac{3}{4} [/tex]</span>X + 2
Check the picture below.
so we know the radius of the semicircle is 2 and the rectangle below it is really a 4x4 square, so let's just get their separate areas and add them up.
![\stackrel{\textit{area of the semicircle}}{\cfrac{1}{2}\pi r^2}\implies \cfrac{1}{2}(\stackrel{\pi }{3.14})(2)^2\implies 3.14\cdot 2\implies 6.28 \\\\\\ \stackrel{\textit{area of the square}}{(4)(4)}\implies 16 \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \stackrel{\textit{sum of both areas}}{16+6.28=22.28}~\hfill](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20semicircle%7D%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20r%5E2%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B2%7D%28%5Cstackrel%7B%5Cpi%20%7D%7B3.14%7D%29%282%29%5E2%5Cimplies%203.14%5Ccdot%202%5Cimplies%206.28%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20square%7D%7D%7B%284%29%284%29%7D%5Cimplies%2016%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsum%20of%20both%20areas%7D%7D%7B16%2B6.28%3D22.28%7D~%5Chfill)
Answer:
Frosts second mile and steadys 6th mike
Step-by-step explanation:
Answer:
1) 114
2) 159
Step-by-step explanation:
2+8+5+9+90 = 114
3+45+111 = 159
Hope this helps.