As reactant concentration decreases, the forward. reaction slows. As product concentration increases, the reverse reaction becomes faster. The forward. reaction will continue to slow and the reverse reaction will continue to increase until they are the same.Then the situation will be at equilibrium.
It’s gluon. Can you make me brainiest pls
Answer:
Kc = [CH₄] / [H₂]²
Kp = [CH₄] / [H₂]² * (0.082*T)^-1
Explanation:
Equilibrium constant, Kc, is defined as the ratio of the concentrations of the products over the reactants. Also, each concentration of product of reactant is powered to its coefficient.
<em>Pure solids and liquids are not taken into account in an equilibrium</em>
Thus, for the reaction:
C(s)+ 2H₂(g) ⇌ CH₄(g)
Equilibrium constant is:
<h3>Kc = [CH₄] / [H₂]²</h3>
Now, using the formula:
Kp = Kc* (RT)^Δn
<em>Where R is gas constant (0.082atmL/molK), T is the temperature of the reaction and Δn is difference in coefficients of gas products - coefficients of gas reactants (1 - 2= -1)</em>
Replacing:
<h3>Kp = [CH₄] / [H₂]² * (0.082*T)^-1</h3>
<em />
Answer:- A) 1 mole of Fe and 1.5 moles of
.
Solution:- The balanced equation is:

From balanced equation, there is 1:3 mol ratio between
and CO, From given data, 3 moles of
and 1.5 moles of CO are taken for the reaction. CO is the limiting reactant as it's moles are less than the other reactant and which is also clear from the mole ratio. We could do the calculations also to support this. Let's calculate the moles of CO required to react completely with given 3 moles of
.

= 9 mol CO
So, from calculations, 9 moles of CO are required to react completely with 3 moles of Iron(III)oxide but only 1.5 moles of CO are available. Hence, CO is the limiting reactant and the product moles are calculated from this as:

= 1 mol Fe

= 1.5 mol 
So, the correct choice is A) 1 mole of Fe and 1.5 moles of
.