Answer:
~1.417M
Explanation:
Molarity=(number of moles of solute)/(litres of solution)
In this case, we need to find moles of potassium bromide.
Mass=25.3g
Molar mass= 119g/mol
moles=(mass/molar mass)
=(25.3)/(119)
=0.2126moles of potassium bromide
Molarity=(0.2126)/(150/1000)
~1.417M
Hope this helps:)
Answer:
2.9 grams.
Explanation:
- From the balanced reaction:
<em>Mg + 1/2O₂ → MgO,</em>
1.0 mole of Mg reacts with 0.5 mole of oxygen to produce 1.0 mole of MgO.
- We need to calculate the no. of moles of (1.8 g) of Mg and (6.0 g) of oxygen:
no. of moles of Mg = mass/molar mass = (1.8 g)/(24.3 g/mol) = 0.074 mol.
no. of moles of O₂ = mass/molar mass = (6.0 g)/(16.0 g/mol) = 0.375 mol.
<em>So. 0.074 mol of Mg reacts completely with (0.074/2 = 0.037 mol) of O₂ which be in excess.</em>
<em></em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of Mg produce → 1.0 mol of MgO.
∴ 0.074 mol of Mg produce → 0.074 mol of MgO.
<em>∴ The amount of MgO produced = no. of moles x molar mass </em>= (0.074 mol)(40.3 g/mol) = <em>2.98 g.</em>
Answer:
the answer would be C of not C is B
If one starts with 0.020 g of Mg, 0.0008 moles of H2 would be made if the reaction is complete.
Going by the balanced equation of reaction in the image, 1 mole of Mg will produce 1 mole of H2 in a complete reaction.
If 0.020 g of Mg is started with:
mole of Mg = mass/molar mass
= 0.020/24.3
= 0.0008 moles
Since the mole of Mg to H2 is 1:1, thus, 0.0008 moles of H2 will also be made from the reaction.
More on stoichiometry can be found here: brainly.com/question/9743981