First of all science is needed to study most things including diseases and this is so since the study of diseases would require a research organism of course and this is any creature that scientist would use to study life and so without science this would not be possible as science allows for the study of animals and humans which are likely to be vectors and diseases requires epidemiology which are scientific disciplines similar to biology to better understand the disease processes and so science is definitely needed.
kinetic energy and potential energy i believe
Have a good day :)
Answer:
please mark as brainliest answer as it will also give you 3 points
Explanation:
Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells.[1] They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. In fact, yeast cells can proliferate normally when their CDK gene has been replaced with the homologous human gene.[1][2] CDKs are relatively small proteins, with molecular weights ranging from 34 to 40 kDa, and contain little more than the kinase domain.[1] By definition, a CDK binds a regulatory protein called a cyclin. Without cyclin, CDK has little kinase activity; only the cyclin-CDK complex is an active kinase but its activity can be typically further modulated by phosphorylation and other binding proteins, like p27. CDKs phosphorylate their substrates on serines and threonines, so they are serine-threonine kinases.[1] The consensus sequence for the phosphorylation site in the amino acid sequence of a CDK substrate is [S/T*]PX[K/R], where S/T* is the phosphorylated serine or threonine, P is proline, X is any amino acid, K is lysine, and R is arginine.[1]
Answer: adenylyl cyclase inositol triphosphate mainly known as IP3 causes the release of Calcium ions directly from the inracellular stores and causea contraction.
Explanation:
IP3, inositol phosphate is a second messenger a signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, by an enzyme phospholipase C.
IP3 binds to the calcium channels and opens Ca2+ channels that are embedded in the ER membrane, releasing Ca2+ into the cytosol. Calcium ions released may cause contraction and regulate the Ca2+ channels in the membranes.