Pretty sure that it is 0.
Answer:
a) 1.3 rad/s
b) 0.722 s
Explanation:
Given
Initial velocity, ω = 0 rad/s
Angular acceleration of the wheel, α = 1.8 rad/s²
using equations of angular motion, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
where
θ2 - θ1 = 53.2 rad
t2 - t1 = 7s
substituting these in the equation, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
53.2 =ω(0) * 7 + 1/2 * 1.8 * 7²
53.2 = 7.ω(0) + 1/2 * 1.8 * 49
53.2 = 7.ω(0) + 44.1
7.ω(0) = 53.2 - 44.1
ω(0) = 9.1 / 7
ω(0) = 1.3 rad/s
Using another of the equations of angular motion, we have
ω(0) = ω(i) + α*t1
1.3 = 0 + 1.8 * t1
1.3 = 1.8 * t1
t1 = 1.3/1.8
t1 = 0.722 s
Based on the trend produced by the dose - response graph, it would be best to evacuate the residents in other to prevent the increasing percentage of deaths due to the rising level of pollutant A.
- The curve shows that the pollutant level in mg/kg of pollutant A is still increasing, hence, groundwater monitoring alone won't be the best decision to make.
- Since the pollutant level is still increasing, then the spill level still need effective monitoring.
- Evacuation of residents seems to be the best decision that should be taken based on the information interpreted on the graph.
Therefore, Evacuating residents to prevent rising death percentage is required as the pollutant level is yet to subside.
Learn more :brainly.com/question/24844489
Answer:
8437.5
Explanation:
By applying the formula of kinetic energy:
Kinetic energy=1/2 mv^2