9*
m
Explanation:
Step 1:
We are given the initial length of the Pyrex glass dish at a particular temperature and need to calculate the change in the length when the temperature changes by 120° C. The coefficient of linear expansion of Pyrex is provided.
Step 2:
Change in length = Coefficient of linear expansion * Change in temperature * Initial length
Step 3:
Coefficient of linear expansion = 3*
/°C
Change in temperature = 120°C = 120 K
Initial length = 0.25 m
Step 4:
Change in length = 3*
* 120 * 0.25 = 9*
m
Work done is by the change in the potential energy of the system. The work done by gravity is 924.63 J.
<h3>
What is the Kinetic Energy?</h3>
- Potential energy in physics is the energy that an item retains as a result of its position in relation to other objects, internal tensions, electric charge, or other elements.
- The gravitational potential energy of an object, which is based on its mass and distance from another object's center of mass, the elastic potential energy of an extended spring, and the electric potential energy of an electric charge in an electric field are examples of common types of potential energy. The joule, denoted by the letter J, is the energy unit in the International System of Units (SI).
Solution:
mass = 5.10 kg
height = 18.5 mm
We know that work done by the gravity on the watermelon is the change in the potential energy of the watermelon, therefore,
Work done due to gravity = change in the potential energy of the system
W = 
W = mg (h₀ - h₁)
W = 5.10 × 9.8 × 18.5
W = 924.63 J
know more about potential energy brainly.com/question/24284560
#SPJ4
Answer:
There are 12 oxygen atoms in 8C12O.
Answer:
D. the linear velocity of the point of contact (relative to the inclined surface) is zero
Explanation:
The force of friction emerges only when there is relative velocity between two objects . In case of perfect rolling , there is no sliding so relative velocity between the surface and the point of contact is zero . In other words the velocity of point of contact becomes zero , even though , the whole body is in linear motion . It happens due point of contact having two velocities which are equal and opposite . One of the velocity is in forward direction and the other velocity which is due to rotation is in backward direction . So net velocity of point of contact becomes zero . Due to absence of sliding , displacement due to friction becomes zero . Hence work done by friction becomes zero.
For a current-carrying wire running perpendicular to a magnetic field, the magnetic force acting on the wire is given by:
F = ILB
F = magnetic force, I = current, L = wire length, B = magnetic field strength
Given values:
F = 0.60N, L = 1.0m, B = 0.20T
Plug in and solve for I:
0.60 = I(1.0)(0.20)
I = 3.0A